RabbitMQ Stream Java Client

Version 0.14.0-SNAPSHOT: (9ceb8f3)

Table of Contents

What is a RabbitMQ Stream?
When to Use RabbitMQ Stream?
Other Way to Use Streams in RabbitMQ
Guarantees
Stream Client Overview
Versioning
Stability of Programming Interfaces
The Stream Java Client
Setting up RabbitMQ
With Docker
With Docker Bridge Network Driver
With Docker Host Network Driver
With a RabbitMQ Package Running on the Host
Dependencies
Maven
Gradle
Snapshots
Sample Application
RabbitMQ Stream Java API
Overview
Environment
Creating the Environment
Understanding Connection Logic
Enabling TLS
Configuring the Environment
When a Load Balancer is in Use
Managing Streams
Producer
Creating a Producer
Sending Messages
Working with Complex Messages
Message Deduplication
Sub-Entry Batching and Compression
Consumer
Creating a Consumer
Specifying an Offset
Tracking the Offset for a Consumer
Flow Control

© © © O O U1 U1 U1 U1 Ul W W W W W NN DN R R

W NN NN NN B | s s s s
N 9T WO © 0ok, O O

Single Active Consumer
Super Streams (Partitioned Streams)
Topology
Super Stream Creation
Publishing to a Super Stream
Consuming From a Super Stream
Advanced Topics
Filtering
Filtering on the Publishing Side
Filtering on the Consuming Side
Considerations on Filtering
Using Native epoll
Building the Client
The Performance Tool
Using the Performance Tool
With Docker
With Docker Host Network Driver
With Docker Bridge Network Driver
With the Java Binary
Common Usage
Connection
Publishing Rate
Number of Producers and Consumers
Streams
Publishing Batch Size
Unconfirmed Messages
Message Size
Connection Pooling
Advanced Usage
Retention
Offset (Consumer)
Offset Tracking (Consumer)
Consumer Names
Producer Names
Load Balancer in Front of the Cluster
Single Active Consumer
Super Streams
Monitoring
Synchronizing Several Instances

Using Environment Variables as Options

Logging

33
36
37
38
38
41
47
47
48
48
49
50
51
51
51
51
52
52
53
54
54
35
35
35
56
57
57
57
58
58
58
58
59
59
60
60
60
61
62
63
63

Building the Performance Tool
Appendix A: Micrometer Observation

Observability - Conventions
Observability - Spans

Process Observation Span

Publish Observation Span
Observability - Metrics

Process Observation

Publish Observation

64
64
64
65
65
65
66
66
66

The RabbitMQ Stream Java Client is a Java library to communicate with the
RabbitM(Q Stream Plugin. It allows creating and deleting streams, as well as
publishing to and consuming from these streams. Learn more in the client
overview.

What is a RabbitMQ Stream?

A RabbitMQ stream is a persistent and replicated data structure that models an append-only log. It
differs from the classical RabbitMQ queue in the way message consumption works. In a classical
RabbitMQ queue, consuming removes messages from the queue. In a RabbitMQ stream, consuming
leaves the stream intact. So the content of a stream can be read and re-read without impact or
destructive effect.

None of the stream or classical queue data structure is better than the other, they are usually suited
for different use cases.

When to Use RabbitM(Q Stream?

RabbitMQ Stream was developed to cover the following messaging use cases:

» Large fan-outs: when several consumer applications need to read the same messages.

* Replay / Time-traveling: when consumer applications need to read the whole history of data or
from a given point in a stream.

» Throughput performance: when higher throughput than with other protocols (AMQP, STOMP,
MQTT) is required.

Large logs: when large amount of data need to be stored, with minimal in-memory overhead.

Other Way to Use Streams in RabbitMQ

It is also possible to use the stream abstraction in RabbitMQ with the AMQP 0-9-1 protocol. Instead
of consuming from a stream with the stream protocol, one consumes from a "stream-powered"
queue with the AMQP 0-9-1 protocol. A "stream-powered" queue is a special type of queue that is
backed up with a stream infrastructure layer and adapted to provide the stream semantics (mainly
non-destructive reading).

Using such a queue has the advantage to provide the features inherent to the stream abstraction
(append-only structure, non-destructive reading) with any AMQP 0-9-1 client library. This is clearly
interesting when considering the maturity of AMQP 0-9-1 client libraries and the ecosystem around
AMQP 0-9-1.

But by using it, one does not benefit from the performance of the stream protocol, which has been
designed for performance in mind, whereas AMQP 0-9-1 is a more general-purpose protocol.

It is not possible to use "stream-powered" queues with the stream Java client, you need to use an
AMQP 0-9-1 client library.

https://rabbitmq.com/stream.html
https://en.wikipedia.org/wiki/Append-only

Guarantees

RabbitMQ stream provides at-least-once guarantees thanks to the publisher confirm mechanism,
which is supported by the stream Java client.

Message deduplication is also supported on the publisher side.

Stream Client Overview

The RabbitMQ Stream Java Client implements the RabbitMQ Stream protocol and avoids dealing
with low-level concerns by providing high-level functionalities to build fast, efficient, and robust
client applications.

* administrate streams (creation/deletion) directly from applications. This can also be useful for
development and testing.

* adapt publishing throughput thanks to the configurable batch size and flow control.

* avoid publishing duplicate messages thanks to message deduplication.

» consume asynchronously from streams and resume where left off thanks to automatic or manual
offset tracking.

* enforce best practices to create client connections — to stream leaders for publishers to minimize
inter-node traffic and to stream replicas for consumers to offload leaders.

* optimize resources thanks to automatic growing and shrinking of connections depending on the
number of publishers and consumers.

* let the client handle network failure thanks to automatic connection recovery and automatic re-
subscription for consumers.

Versioning

The RabbitMQ Stream Java Client is in development and stabilization phase. When the stabilization
phase ends, a 1.0.0 version will be cut, and semantic versioning is likely to be enforced.

Before reaching the stable phase, the client will use a versioning scheme of [@.MINOR.PATCH] where:

* 0 indicates the project is still in a stabilization phase.

* MINOR is a O-based number incrementing with each new release cycle. It generally reflects
significant changes like new features and potentially some programming interfaces changes.

* PATCH is a 0-based number incrementing with each service release, that is bux fixes.

Breaking changes between releases can happen but will be kept to a minimum. The next section
provides more details about the evolution of programming interfaces.

https://github.com/rabbitmq/rabbitmq-server/blob/v3.12.x/deps/rabbitmq_stream/docs/PROTOCOL.adoc
https://blog.rabbitmq.com/posts/2021/07/connecting-to-streams/
https://semver.org/

Stability of Programming Interfaces

The RabbitMQ Stream Java Client is in active development but its programming interfaces will
remain as stable as possible. There is no guarantee though that they will remain completely stable,
at least until it reaches version 1.0.0.

The client contains 2 sets of programming interfaces whose stability are of interest for application
developers:

* Application Programming Interfaces (API): those are the ones used to write application logic.
They include the interfaces and classes in the com.rabbitmg.stream package (e.g. Producer,
Consumer, Message). These API constitute the main programming model of the client and will be
kept as stable as possible.

* Service Provider Interfaces (SPI): those are interfaces to implement mainly technical behavior
in the client. They are not meant to be used to implement application logic. Application
developers may have to refer to them in the configuration phase and if they want to custom
some internal behavior in the client. SPI include interfaces and classes in the
com.rabbitmqg.stream.codec, com.rabbitmq.stream.compression, com.rabbitmqg.stream.metrics
packages, among others. These SPI are susceptible to change, but this should not impact the
majority of applications, as the changes would typically stay intern to the client.

The Stream Java Client

The library requires Java 8 or later. Java 11 is recommended (CRC calculation uses methods
available as of Java 9.)

Setting up RabbitMQ

A RabbitMQ 3.9+ node with the stream plugin enabled is required. The easiest way to get up and
running is to use Docker.

With Docker

There are different ways to make the broker visible to the client application when running in
Docker. The next sections show a couple of options suitable for local development.

Docker on macOS

NOTE Docker runs on a virtual machine when using macOS, so do not expect high
performance when using RabbitMQ Stream inside Docker on a Mac.

With Docker Bridge Network Driver

This section shows how to start a broker instance for local development (the broker Docker
container and the client application are assumed to run on the same host).

The following command creates a one-time Docker container to run RabbitMQ:

Running the stream plugin with Docker

docker run -it --rm --name rabbitmq -p 5552:5552 \

-e RABBITMQ_SERVER_ADDITIONAL_ERL_ARGS='-rabbitmq_stream advertised_host
localhost' \

rabbitmq:3.12

The previous command exposes only the stream port (5552), you can expose ports for other
protocols:

Exposing the AMQP 0.9.1 and management ports:

docker run -it --rm --name rabbitmq -p 5552:5552 -p 5672:5672 -p 15672:15672 \
-e RABBITMQ_SERVER_ADDITIONAL_ERL_ARGS='-rabbitmq_stream advertised_host
localhost' \
rabbitmq:3.12-management

Refer to the official RabbitMQ Docker image web page to find out more about its usage.
Once the container is started, the stream plugin must be enabled:

Enabling the stream plugin:

docker exec rabbitmq rabbitmq-plugins enable rabbitmq_stream

With Docker Host Network Driver

This is the simplest way to run the broker locally. The container uses the host network, this is
perfect for experimenting locally.

Running RabbitMQ Stream with the host network driver

docker run -it --rm --name rabbitmg --network host rabbitmg:3.12

Once the container is started, the stream plugin must be enabled:

Enabling the stream plugin:

docker exec rabbitmq rabbitmq-plugins enable rabbitmq_stream

The container will use the following ports: 5552 (for stream) and 5672 (for AMQP.)

Docker Host Network Driver Support
NOTE , ' .
The host networking driver only works on Linux hosts.

https://hub.docker.com/_/rabbitmq
https://docs.docker.com/network/host/

With a RabbitMQ Package Running on the Host
Using a package implies installing Erlang.

* Make sure to use RabbitMQ 3.11 or later.
* Follow the steps to install Erlang and the appropriate package
* Enable the plugin rabbitmq-plugins enable rabbitmq_stream.

* The stream plugin listens on port 5552.

Refer to the stream plugin documentation for more information on configuration.

Dependencies

Use your favorite build management tool to add the client dependencies to your project.

Maven
pom.xml
<dependencies>
<dependency>
<groupId>com.rabbitmq</groupId>
<artifactId>stream-client</artifactId>
<version>0.14.0-SNAPSHOT</version>

</dependency>

</dependencies>

Snapshots require to declare the appropriate repository.
Gradle
build.gradle

dependencies {

compile "com.rabbitmq:stream-client:0.14.0-SNAPSHOT"
}

Snapshots require to declare the appropriate repository.

Snapshots

Releases are available from Maven Central, which does not require specific declaration. Snapshots
are available from a repositoriy which must be declared in the dependency management
configuration.

https://github.com/rabbitmq/rabbitmq-server/releases
https://rabbitmq.com/download.html
https://rabbitmq.com/stream.html

With Maven:

Snapshot repository declaration for Maven
<repositories>

<repository>
<id>ossrh</id>
<url>https://oss.sonatype.org/content/repositories/snapshots</url>
<snapshots><enabled>true</enabled></snapshots>
<releases><enabled>false</enabled></releases>

</repository>

</repositories>

With Gradle:

Snapshot repository declaration for Gradle:

repositories {
maven { url 'https://oss.sonatype.org/content/repositories/snapshots' }
mavenCentral()

}

Sample Application

This section covers the basics of the RabbitMQ Stream Java API by building a small
publish/consume application. This is a good way to get an overview of the API If you want a more
comprehensive introduction, you can go to the reference documentation section.

The sample application publishes some messages and then registers a consumer to make some
computations out of them. The source code is available on GitHub.

The sample class starts with a few imports:

Imports for the sample application

import com.rabbitmq.stream.*;

import java.util.UUID;

import java.util.concurrent.CountDownlLatch;
import java.util.concurrent.TimeUnit;

import java.util.concurrent.atomic.Atomiclong;
import java.util.stream.IntStream;

The next step is to create the Environment. It is a management object used to manage streams and
create producers as well as consumers. The next snippet shows how to create an Environment
instance and create the stream used in the application:

https://github.com/rabbitmq/rabbitmq-stream-java-client/blob/main/src/test/java/com/rabbitmq/stream/docs/SampleApplication.java

Creating the environment

System.out.println("Connecting...");

Environment environment = Environment.builder().build(); @
String stream = UUID.randomUUID().toString();
environment.streamCreator().stream(stream).create(); @

@ Use Environment#builder to create the environment

@ Create the stream

Then comes the publishing part. The next snippet shows how to create a Producer, send messages,
and handle publishing confirmations, to make sure the broker has taken outbound messages into
account. The application uses a count down latch to move on once the messages have been
confirmed.

Publishing messages

System.out.println("Starting publishing...");
int messageCount = 10000;
CountDownlLatch publishConfirmLatch = new CountDownLatch(messageCount);
Producer producer = environment.producerBuilder() @
.stream(stream)
.build();
IntStream.range(?, messageCount)
.forEach(i -> producer.send(@

producer.messageBuilder() ®
.addData(String.valueOf(i).getBytes()) @
.build(), ®

confirmationStatus -> publishConfirmLatch.countDown() @

));
publishConfirmLatch.await(10, TimeUnit.SECONDS); ®
producer.close(); ®
System.out.printf("Published %,d messages%n", messageCount);

@ Create the Producer with Environment#fproducerBuilder

@ Send messages with Producer#isend(Message, ConfirmationHandler)

® Create a message with Producer#messageBuilder

@ Count down on message publishing confirmation

® Wait for all publishing confirmations to have arrived

® Close the producer

It is now time to consume the messages. The Environment lets us create a Consumer and provide some

logic on each incoming message by implementing a MessageHandler. The next snippet does this to
calculate a sum and output it once all the messages have been received:

Consuming messages

System.out.println("Starting consuming...");

AtomicLong sum = new AtomiclLong(@);
CountDownLatch consumelatch = new CountDownlLatch(messageCount);
Consumer consumer = environment.consumerBuilder() @
.stream(stream)
.offset(0ffsetSpecification.first()) @
.messageHandler ((offset, message) -> { ®
sum.addAndGet (Long.parselLong(new String(message.getBodyAsBinary()))); @
consumelatch.countDown(); ®

1))
.build();

consumelLatch.await(10, TimeUnit.SECONDS); ®
System.out.println("Sum: " + sum.get()); @

consumer.close();

@ Create the Consumer with Environment#consumerBuilder
@ Start consuming from the beginning of the stream

® Set up the logic to handle messages

@ Add the value in the message body to the sum

® Count down on each message

® Wait for all messages to have arrived

@ Output the sum

Close the consumer

The application has some cleaning to do before terminating, that is deleting the stream and closing
the environment:

Cleaning before terminating

environment.deleteStream(stream); @
environment.close(); @

@ Delete the stream

@ Close the environment

You can run the sample application from the root of the project (you need a running local
RabbitMQ node with the stream plugin enabled):

$./mvnw -q test-compile exec:java -Dexec.classpathScope="test" \
-Dexec.mainClass="com.rabbitmq.stream.docs.SampleApplication"

Starting publishing...

Published 10000 messages

Starting consuming...

Sum: 49995000

You can remove the -q flag if you want more insight on the execution of the build.

RabbitM(Q Stream Java API

Overview

This section describes the API to connect to the RabbitMQ Stream Plugin, publish messages, and
consume messages. There are 3 main interfaces:

* com.rabbitmq.stream.Environment for connecting to a node and optionally managing streams.
* com.rabbitmq.stream.Producer to publish messages.

e com.rabbitmq.stream.Consumer to consume messages.

Environment

Creating the Environment

The environment is the main entry point to a node or a cluster of nodes. Producer and Consumer
instances are created from an Environment instance. Here is the simplest way to create an
Environment instance:

Creating an environment with all the defaults

Environment environment = Environment.builder().build(); @
/] ...
environment.close(); @

@ Create an environment that will connect to localhost:5552

@ Close the environment after usage
Note the environment must be closed to release resources when it is no longer needed.

Consider the environment like a long-lived object. An application will usually create one
Environment instance when it starts up and close it when it exits.

It is possible to use a URI to specify all the necessary information to connect to a node:

Creating an environment with a URI

Environment environment = Environment.builder()
.uri("rabbitmq-stream://quest:guest@localhost:5552/%2f") @
.build();

@ Use the uri method to specify the URI to connect to

The previous snippet uses a URI that specifies the following information: host, port, username,
password, and virtual host (/, which is encoded as %2f). The URI follows the same rules as the AMQP
0.9.1 URI, except the protocol must be rabbitmg-stream. TLS is enabled by using the rabbitmq-

https://www.rabbitmq.com/uri-spec.html
https://www.rabbitmq.com/uri-spec.html

stream+tls scheme in the URI.

When using one URI, the corresponding node will be the main entry point to connect to. The
Environment will then use the stream protocol to find out more about streams topology (leaders and
replicas) when asked to create Producer and Consumer instances. The Environment may become blind
if this node goes down though, so it may be more appropriate to specify several other URIs to try in
case of failure of a node:

Creating an environment with several URIs

Environment environment = Environment.builder()
.uris(Arrays.asList(®
"rabbitmg-stream://host1:5552",
"rabbitmg-stream://host2:5552",
"rabbitmq-stream://host3:5552")

)
.build();

@ Use the uris method to specify several URIs

By specifying several URIs, the environment will try to connect to the first one, and will pick a new
URI randomly in case of disconnection.

Understanding Connection Logic

Creating the environment to connect to a cluster node works usually seamlessly. Creating
publishers and consumers can cause problems as the client uses hints from the cluster to find the
nodes where stream leaders and replicas are located to connect to the appropriate nodes.

These connection hints can be accurate or less appropriate depending on the infrastructure. If you
hit some connection problems at some point — like hostnames impossible to resolve for client
applications - this blog post should help you understand what is going on and fix the issues.

To make the local development experience simple, the client library can choose to always use
localhost for producers and consumers. This happens if the following conditions are met: the initial
host to connect to is localhost, the user is quest, and no custom address resolver has been provided.
Provide a pass-through AddressResolver to EnvironmentBuilder#addressResolver (AddressResolver) to
avoid this behavior. It is unlikely this behavior applies for any real-world deployment, where
localhost and/or the default guest user should not be used.

Enabling TLS

TLS can be enabled by using the rabbitmg-stream+tls scheme in the URI. The default TLS port is
5551.

Use the EnvironmentBuilder#tls method to configure TLS. The most important setting is a
jo.netty.handler.ssl.Ss1lContext instance, which 1is created and configured with the
io.netty.handler.ssl.Ss1Context#forClient method. Note hostname verification is enabled by
default.

10

https://blog.rabbitmq.com/posts/2021/07/connecting-to-streams/

The following snippet shows a common configuration, whereby the client is instructed to trust
servers with certificates signed by the configured certificate authority (CA).

Creating an environment that uses TLS

X509Certificate certificate;
try (FileInputStream inputStream =
new FileInputStream("/path/to/ca_certificate.pem")) {
CertificateFactory fact = CertificateFactory.getInstance("X.509");
certificate = (X509Certificate) fact.generateCertificate(inputStream); @®

}

Ss1Context sslContext = SslContextBuilder
.forClient()
.trustManager(certificate) @
.build();

Environment environment = Environment.builder()
.uri("rabbitmg-stream+tls://quest:quest@localhost:5551/%2f") @
.t1s().sslContext(sslContext) @

.environmentBuilder()
.build();

® Load certificate authority (CA) certificate from PEM file

@ Configure Netty Ss1Context to trust CA certificate

® Use TLS scheme in environment URI

@ Set Ss1Context in environment configuration

It is sometimes handy to trust any server certificates in development environments.

EnvironmentBuilder#tls provides the trustEverything method to do so. This should not be used in a
production environment.

Creating a TLS environment that trusts all server certificates for development

Environment environment = Environment.builder()
.uri("rabbitmq-stream+tls://quest:quest@localhost:5551/%2f")
.t1s().trustEverything() @

.environmentBuilder()
.build();

@ Trust all server certificates

Configuring the Environment
The following table sums up the main settings to create an Environment:

Parameter Name Description Default

uri The URI of the node to connect rabbitmq-
to (single node) stream://quest:guest@localhost

:5552/%2f

11

Parameter Name

uris

host

port
username
password
virtualHost
rpcTimeout

recoveryBackOffDelayPolicy

topologyUpdateBackOffDelayPoli
cy

scheduledExecutorService

maxProducersByConnection

maxTrackingConsumersByConnecti
on

12

Description

The URI of the nodes to try to
connect to (cluster).

Host to connect to.

Port to use.

Username to use to connect.
Password to use to connect.
Virtual host to connect to.
Timeout for RPC calls.

Delay policy to use for backoff
on connection recovery.

Delay policy to use for backoff
on topology update, e.g. when a
stream replica moves and a
consumer needs to connect to
another node.

Executor used to schedule
infrastructure tasks like
background publishing,
producers and consumers
migration after disconnection
or topology update. If a custom
executor is provided, it is the
developer’s responsibility to
close it once it is no longer
necessary.

The maximum number of
Producer instances a single

connection can maintain before

a new connection is open. The
value must be between 1 and
255.

The maximum number of
Consumer instances that store
their offset a single connection
can maintain before a new
connection is open. The value
must be between 1 and 255.

Default

rabbitmg-
stream://quest:guest@localhost

:5552/%2f singleton list
localhost

5552
guest
guest
/

Duration.ofSeconds(10)

Fixed delay of 5 seconds

Initial delay of 5 seconds then
delay of 1 second.

Executors
.newScheduledThreadPool(
Runtime
.getRuntime()
.availableProcessors()

Ib

2355

50

Parameter Name

maxConsumersByConnection

lazyInitialization

requestedHeartbeat

forceReplicaForConsumers

id

addressResolver

tls

t1ls#hostnameVerification

tls#tss1Context

tls#trustEverything

Description

The maximum number of
Consumer instances a single
connection can maintain before
a new connection is open. The
value must be between 1 and
255.

To delay the connection
opening until necessary.

Heartbeat requested by the
client.

Retry connecting until a replica
is available for consumers. The
client retries 5 times before
falling back to the stream
leader node. Set to true only for
clustered environments, not for
1-node environments, where
only the stream leader is
available.

Informational ID for the
environment instance. Used as
a prefix for connection names.

Contract to change resolved
node address to connect to.

Configuration helper for TLS.

Enable or disable hostname
verification.

Set the
io.netty.handler.ssl.Ss1Contex

t used for the TLS connection.

Use
io.netty.handler.ss1l.Ss1Contex

tBuilder#for(Client to configure
it. The server certificate chain
and the client private key are
the typical elements that need
to be configured.

Helper to configure a
Ss1Context that trusts all server
certificates and does not use a
client private key. Only for
development.

Default
255

false

60 seconds

false

rabbitmg-stream

Pass-through (no-op)
TLS is enabled if a rabbitmg-
stream+t1ls URI is provided.

Enabled by default.

The JDK trust manager and no
client private key.

Disabled by default.

13

Parameter Name

netty

netty#feventLoopGroup

netty#ByteBufAllocator

netty#channelCustomizer

netty#bootstrapCustomizer

When a Load Balancer is in Use

A load balancer can misguide the client when it tries to connect to nodes that host stream leaders
and replicas. The "Connecting to Streams" blog post covers why client applications must connect to

Description Default
Configuration helper for Netty.

Netty’s event dispatcher. It is NioEventLoopGroup instance
the developer’s responsibility to closed automatically with the
close the EventLoopGroup they Environment instance.
provide.

ByteBuf allocator. ByteBufAllocator.DEFAULT

Extension point to customize None
Netty’s Channel instances used
for connections.

Extension point to customize None
Netty’s Bootstrap instances used
to configure connections.

the appropriate nodes in a cluster and how a load balancer can make things complicated for them.

The EnvironmentBuilder#addressResolver(AddressResolver) method allows intercepting the node
resolution after metadata hints and before connection. Applications can use this hook to ignore

metadata hints and always use the load balancer, as illustrated in the following snippet:

Using a custom address resolver to always use a load balancer

Address entryPoint = new Address("my-load-balancer", 5552); @
Environment environment = Environment.builder()
.host(entryPoint.host()) @
.port(entryPoint.port()) @
.addressResolver(address -> entryPoint) ®

.build();

@ Set the load balancer address

@ Use load balancer address for initial connection

® Ignore metadata hints, always use load balancer

The blog post covers the underlying details of this workaround.

Managing Streams

Streams are usually long-lived, centrally-managed entities, that is, applications are not supposed to
create and delete them. It is nevertheless possible to create and delete stream with the Environment.

This comes in handy for development and testing purposes.

Streams are created with the EnvironmentffstreamCreator () method:

14

https://blog.rabbitmq.com/posts/2021/07/connecting-to-streams/
https://blog.rabbitmq.com/posts/2021/07/connecting-to-streams/#with-a-load-balancer
https://blog.rabbitmq.com/posts/2021/07/connecting-to-streams/#client-workaround-with-a-load-balancer

Creating a stream

environment.streamCreator().stream("my-stream").create(); @

@ Create the my-stream stream

StreamCreator#icreate is idempotent: trying to re-create a stream with the same name and same
properties (e.g. maximum size, see below) will not throw an exception. In other words, you can be
sure the stream has been created once StreamCreator#icreate returns. Note it is not possible to create
a stream with the same name as an existing stream but with different properties. Such a request
will result in an exception.

Streams can be deleted with the Environment#delete(String) method:

Deleting a stream

environment.deleteStream("my-stream"); @

@ Delete the my-stream stream

Note you should avoid stream churn (creating and deleting streams repetitively) as their creation
and deletion imply some significant housekeeping on the server side (interactions with the file
system, communication between nodes of the cluster).

It is also possible to limit the size of a stream when creating it. A stream is an append-only data
structure and reading from it does not remove data. This means a stream can grow indefinitely.
RabbitMQ Stream supports a size-based and time-based retention policies: once the stream reaches
a given size or a given age, it is truncated (starting from the beginning).

Limit the size of streams if appropriate!

Make sure to set up a retention policy on potentially large streams if you
don’t want to saturate the storage devices of your servers. Keep in mind that
this means some data will be erased!

IMPORTANT

It is possible to set up the retention policy when creating the stream:

Setting the retention policy when creating a stream

environment.streamCreator()
.stream("my-stream")
.maxLengthBytes(ByteCapacity.GB(10)) @
.maxSegmentSizeBytes(ByteCapacity.MB(500)) @
.create();

@ Set the maximum size to 10 GB

@ Set the segment size to 500 MB

The previous snippet mentions a segment size. RabbitMQ Stream does not store a stream in a big,
single file, it uses segment files for technical reasons. A stream is truncated by deleting whole

15

segment files (and not part of them)so the maximum size of a stream is usually significantly higher
than the size of segment files. 500 MB is a reasonable segment file size to begin with.

When does the broker enforce the retention policy?

The broker enforces the retention policy when the segments of a stream roll over,

NOTE that is when the current segment has reached its maximum size and is closed in
favor of a new one. This means the maximum segment size is a critical setting in the
retention mechanism.

RabbitMQ Stream also supports a time-based retention policy: segments get truncated when they
reach a certain age. The following snippet illustrates how to set the time-based retention policy:

Setting a time-based retention policy when creating a stream

environment.streamCreator()
.stream("my-stream")
.maxAge(Duration.ofHours(6)) @
.maxSegmentSizeBytes(ByteCapacity.MB(500)) @
.create();

@ Set the maximum age to 6 hours

@ Set the segment size to 500 MB

Producer

Creating a Producer

A Producer instance is created from the Environment. The only mandatory setting to specify is the
stream to publish to:

Creating a producer from the environment

Producer producer = environment.producerBuilder() @
.stream("my-stream") @
.build(); ®

/] ...

producer.close(); @

@ Use Environment#producerBuilder() to define the producer
@ Specify the stream to publish to
® Create the producer instance with build()

@ Close the producer after usage

Consider a Producer instance like a long-lived object, do not create one to send just one message.

Producer thread safety

NOTE Producer instances are thread-safe. Deduplication imposes restrictions on the usage

16

of threads though.

Internally, the Environment will query the broker to find out about the topology of the stream and
will create or re-use a connection to publish to the leader node of the stream.

The following table sums up the main settings to create a Producer:

Parameter Name Description Default
stream The stream to publish to. No default, mandatory setting.
name The logical name of the null (no deduplication)

producer. Specify a name to
enable message deduplication.

batchSize The maximum number of 100
messages to accumulate before
sending them to the broker.

subEntrySize The number of messages to put 1 (meaning no use of sub-entry
in a sub-entry. A sub-entry is batching)
one "slot" in a publishing frame,
meaning outbound messages
are not only batched in
publishing frames, but in sub-
entries as well. Use this feature
to increase throughput at the
cost of increased latency and
potential duplicated messages
even when deduplication is
enabled. See the dedicated
section for more information.

compression Compression algorithm to use Compression.NONE
when sub-entry batching is in
use. See the dedicated section
for more information.

maxUnconfirmedMessages The maximum number of 10,000
unconfirmed outbound
messages. Producer#isend will
start blocking when the limit is

reached.

batchPublishingDelay Period to send a batch of 100 ms
messages.

confirmTimeout Time before the client calls the 30 seconds

confirm callback to signal
outstanding unconfirmed
messages timed out.

17

Parameter Name Description Default

enqueueTimeout Time before enqueueing of a 10 seconds.
message fail when the
maximum number of
unconfirmed is reached. The
callback of the message will be
called with a negative status.
Set the value to Duration.ZERO if
there should be no timeout.

Sending Messages

Once a Producer has been created, it is possible to send a message with the Producer#send(Message,
ConfirmationHandler) method. The following snippet shows how to publish a message with a byte
array payload:

Sending a message

byte[] messagePayload = "hello".getBytes(StandardCharsets.UTF_8); @
producer.send(
producer.messageBuilder().addData(messagePayload).build(), @
confirmationStatus -> { ®
if (confirmationStatus.isConfirmed()) {
// the message made it to the broker
} else {
// the message did not make it to the broker

}
b

@ The payload of a message is an array of bytes
@ Create the message with Producer#messageBuilder ()

® Define the behavior on publish confirmation

Messages are not only made of a byte[] payload, we will see in the next section they can also carry
pre-defined and application properties.

Use a MessageBuilder instance only once

NOTE A MessageBuilder instance is meant to create only one message. You need to create a
new instance of MessageBuilder for every message you want to create.

The ConfirmationHandler defines an asynchronous callback invoked when the client received from
the broker the confirmation the message has been taken into account. The ConfirmationHandler is
the place for any logic on publishing confirmation, including re-publishing the message if it is
negatively acknowledged.

Keep the confirmation callback as short as possible

WARNING The confirmation callback should be kept as short as possible to avoid blocking

18

the connection thread. Not doing so can make the Environment, Producer,
Consumer instances sluggish or even block them. Any long processing should be
done in a separate thread (e.g. with an asynchronous ExecutorService).

Working with Complex Messages

The publishing example above showed that messages are made of a byte array payload, but it did
not go much further. Messages in RabbitMQ Stream can actually be more sophisticated, as they
comply to the AMQP 1.0 message format.

In a nutshell, a message in RabbitMQ Stream has the following structure:
* properties: a defined set of standard properties of the message (e.g. message ID, correlation ID,
content type, etc).
» application properties: a set of arbitrary key/value pairs.
* body: typically an array of bytes.
* message annotations: a set of key/value pairs (aimed at the infrastructure).
The RabbitMQ Stream Java client uses the Message interface to abstract a message and the

recommended way to create Message instances is to use the Producer#messageBuilder() method. To
publish a Message, use the Producer#send(Message,ConfirmationHandler):

Creating a message with properties

Message message = producer.messageBuilder() @

.properties() @
.messageId(UUID.randomUUID())
.correlationId(UUID.randomUUID())
.contentType("text/plain")

.messageBuilder() ®
.addData("hello".getBytes(StandardCharsets.UTF_8)) @

.build(); ®

producer.send(message, confirmationStatus -> { }); ®

@ Get the message builder from the producer

@ Get the properties builder and set some properties
® Go back to message builder

@ Set byte array payload

® Build the message instance

® Publish the message

Is RabbitMQ Stream based on AMQP 1.0?

AMQP 1.0 is a standard that defines an efficient binary peer-to-peer protocol for
NOTE transporting messages between two processes over a network. It also defines an
abstract message format, with concrete standard encoding. This is only the latter part
that RabbitMQ Stream uses. The AMQP 1.0 protocol is not used, only AMQP 1.0

19

https://www.amqp.org/resources/specifications

encoded messages are wrapped into the RabbitMQ Stream binary protocol.

The actual AMQP 1.0 message encoding and decoding happen on the client side, the
RabbitMQ Stream plugin stores only bytes, it has no idea that AMQP 1.0 message
format is used.

AMQP 1.0 message format was chosen because of its flexibility and its advanced
type system. It provides good interoperability, which allows streams to be accessed
as AMQP 0-9-1 queues, without data loss.

Message Deduplication

RabbitMQ Stream provides publisher confirms to avoid losing messages: once the broker has
persisted a message it sends a confirmation for this message. But this can lead to duplicate
messages: imagine the connection closes because of a network glitch after the message has been
persisted but before the confirmation reaches the producer. Once reconnected, the producer will
retry to send the same message, as it never received the confirmation. So the message will be
persisted twice.

Luckily RabbitMQ Stream can detect and filter out duplicated messages, based on 2 client-side

elements: the producer name and the message publishing ID.

WARNING

WARNING

Deduplication is not guaranteed when using sub-entries batching

It is not possible to guarantee deduplication when sub-entry batching is in use.
Sub-entry batching is disabled by default and it does not prevent from
batching messages in a single publish frame, which can already provide very
high throughput.

Deduplication is not guaranteed when publishing on several threads

We’ll see below that deduplication works using a strictly increasing sequence
for messages. This means messages must be published in order and the
preferred way to do this is usually within a single thread. Even if messages are
created in order, with the proper sequence ID, if they are published in several
threads, they can get out of order, e.g. message 5 can be published before
message 2. The deduplication mechanism will then filter out message 2 in this
case.

So you have to be very careful about the way your applications publish
messages when deduplication is in use. If you worry about performance, note
it is possible to publish hundreds of thousands of messages in a single thread
with RabbitMQ Stream.

Setting the Name of a Producer

The producer name is set when creating the producer instance, which automatically enables

deduplication:

20

Naming a producer to enable message deduplication

Producer producer = environment.producerBuilder()
.name("my-app-producer") @
.confirmTimeout(Duration.ZERO) @
.stream("my-stream")

.build();

@ Set a name for the producer

@ Disable confirm timeout check

Thanks to the name, the broker will be able to track the messages it has persisted on a given stream
for this producer. If the producer connection unexpectedly closes, it will automatically recover and
retry outstanding messages. The broker will then filter out messages it has already received and
persisted. No more duplicates!

Why setting confirmTimeout to 0 when using deduplication?

The point of deduplication is to avoid duplicates when retrying unconfirmed
messages. But why retrying in the first place? To avoid losing messages, that
is enforcing at-least-once semantics. If the client does not stubbornly retry
IMPORTANT messages and gives up at some point, messages can be lost, which maps to
at-most-once semantics. This is why the deduplication examples set the
confirmTimeout setting to Duration.ZERO: to disable the background task that
calls the confirmation callback for outstanding messages that time out. This
way the client will do its best to retry messages until they are confirmed.

A producer name must be stable and clear to a human reader. It must not be a random sequence
that changes when the producer application is restarted. Names like online-shop-order or online-
shop-invoice are better names than 3d235e79-0473-46a6-8c80-9d159d3e1b05. There should be only
one living instance of a producer with a given name on a given stream at the same time.

Understanding Publishing ID

The producer name is only one part of the deduplication mechanism, the other part is the message
publishing ID. If the producer has a name, the client automatically assigns a publishing ID to each
outbound message for the producer. The publishing ID is a strictly increasing sequence, starting at
0 and incremented for each message. The default publishing sequence is good enough for
deduplication, but it is possible to assign a publishing ID to each message:

Using an explicit publishing ID
Message message = producer.messageBuilder()
.publishingId(1) @
.addData("hello".getBytes(StandardCharsets.UTF_8))

.build();
producer.send(message, confirmationStatus -> { });

@ Set a publishing ID on a message

21

There are a few rules to follow when using a custom publishing ID sequence:

* the sequence must be strictly increasing
* there can be gaps in the sequence (e.g. 0, 1, 2, 3,6, 7, 9, 10, etc)

 the sequence does not have to start at 0, as long as it is increasing

A custom publishing ID sequence has usually a meaning: it can be the line number of a file or the
primary key in a database.

Note the publishing ID is not part of the message: it is not stored with the message and so is not
available when consuming the message. It is still possible to store the value in the AMQP 1.0
message application properties or in an appropriate properties (e.g. messageld).

Do not mix client-assigned and custom publishing ID

As soon as a producer name is set, message deduplication is enabled. It is
then possible to let the producer assign a publishing ID to each message or
assign custom publishing IDs. Do one or the other, not both!

IMPORTANT

Restarting a Producer Where It Left Off

Using a custom publishing sequence is even more useful to restart a producer where it left off.
Imagine a scenario whereby the producer is sending a message for each line in a file and the
application uses the line number as the publishing ID. If the application restarts because of some
necessary maintenance or even a crash, the producer can restart from the beginning of the file:
there would no duplicate messages because the producer has a name and the application sets
publishing IDs appropriately. Nevertheless, this is far from ideal, it would be much better to restart
just after the last line the broker successfully confirmed. Fortunately this is possible thanks to the
ProducerfigetLastPublishing() method, which returns the last publishing ID for a given producer. As
the publishing ID in this case is the line number, the application can easily scroll to the next line
and restart publishing from there.

The next snippet illustrates the use of Producer#igetLastPublishing():

Setting a producer where it left off

Producer producer = environment.producerBuilder()
.name("my-app-producer") @
.confirmTimeout(Duration.ZERO) @
.stream("my-stream")

.build();

long nextPublishingId = producer.getlastPublishingIld() + 1; ®

while (moreContent(nextPublishingld)) {
byte[] content = getContent(nextPublishingld); @
Message message = producer.messageBuilder()

.publishingId(nextPublishingId) ®
.addData(content)
.build();
producer.send(message, confirmationStatus -> {});
nextPublishingId++;

22

@ Set a name for the producer

@ Disable confirm timeout check

® Query last publishing ID for this producer and increment it
@ Scroll to the content for the next publishing ID

® Set the message publishing

Sub-Entry Batching and Compression

RabbitMQ Stream provides a special mode to publish, store, and dispatch messages: sub-entry
batching. This mode increases throughput at the cost of increased latency and potential duplicated
messages even when deduplication is enabled. It also allows using compression to reduce
bandwidth and storage if messages are reasonably similar, at the cost of increasing CPU usage on
the client side.

Sub-entry batching consists in squeezing several messages — a batch — in the slot that is usually used
for one message. This means outbound messages are not only batched in publishing frames, but in
sub-entries as well.

You can enable sub-entry batching by setting the ProducerBuilder#subEntrySize parameter to a
value greater than 1, like in the following snippet:

Enabling sub-entry batching

Producer producer = environment.producerBuilder()
.stream("my-stream")
.batchSize(100) @
.subEntrySize(10) @
.build();

@ Set batch size to 100 (the default)

@ Set sub-entry size to 10
Reasonable values for the sub-entry size usually go from 10 to a few dozens.

A sub-entry batch will go directly to disc after it reached the broker, so the publishing client has
complete control over it. This is the occasion to take advantage of the similarity of messages and
compress them. There is no compression by default but you can choose among several algorithms
with the ProducerBuilder#compression(Compression) method:

Enabling compression of sub-entry messages

Producer producer = environment.producerBuilder()
.stream("my-stream")
.batchSize(100) @
.subEntrySize(10) @
.compression(Compression.ZSTD) ®

23

.build();

@ Set batch size to 100 (the default)
@ Set sub-entry size to 10

® Use the Zstandard compression algorithm

Note the messages in a sub-entry are compressed altogether to benefit from their potential
similarity, not one by one.

The following table lists the supported algorithms, general information about them, and the
respective implementations used by default.

Algorithm Overview Implementation used
gzip Has a high compression ratio JDK implementation
but is slow compared to other
algorithms.
Snappy Aims for reasonable Xerial Snappy (framed)
compression ratio and very
high speeds.
LZ4 Aims for good trade-off LZ4 Java (framed)

between speed and
compression ratio.

zstd (Zstandard) Aims for high compression ratio zstd-jni
and high speed, especially for
decompression.

You are encouraged to test and evaluate the compression algorithms depending on your needs.

The compression libraries are pluggable thanks to the
EnvironmentBuilder#compressionCodecFactory(CompressionCodecFactory) method.

Consumers, sub-entry batching, and compression

There is no configuration required for consumers with regard to sub-entry batching
and compression. The broker dispatches messages to client libraries: they are
NOTE supposed to figure out the format of messages, extract them from their sub-entry,
and decompress them if necessary. So when you set up sub-entry batching and
compression in your publishers, the consuming applications must use client
libraries that support this mode, which is the case for the stream Java client.

Consumer

Consumer is the API to consume messages from a stream.

Creating a Consumer

A Consumer instance is created with Environment#consumerBuilder (). The main settings are the stream

24

https://en.wikipedia.org/wiki/Gzip
https://en.wikipedia.org/wiki/Snappy_(compression)
https://github.com/xerial/snappy-java
https://en.wikipedia.org/wiki/LZ4_(compression_algorithm)
https://github.com/lz4/lz4-java
https://en.wikipedia.org/wiki/Zstd
https://github.com/luben/zstd-jni

to consume from, the place in the stream to start consuming from (the offset), and a callback when
a message is received (the MessageHandler). The next snippet shows how to create a Consumer:

Creating a consumer

Consumer consumer = environment.consumerBuilder() @
.stream("my-stream") @
.offset(0ffsetSpecification.first()) @
.messageHandler ((offset, message) -> {

message.getBodyAsBinary(); @

b

.build(); ®
/] ...
consumer.close(); ®

@ Use Environment#iconsumerBuilder () to define the consumer
@ Specify the stream to consume from

® Specify where to start consuming from

@ Define behavior on message consumption

® Build the consumer

® Close consumer after usage

The broker start sending messages as soon as the Consumer instance is created.

The message processing callback can take its time, but not too much

The message processing callback should not take too long or it could impact
other consumers sharing the same connection. The
EnvironmentBuilder#maxConsumersByConnection(int) method allows isolating

WARNING consumers from each other, at the cost of creating and maintaining more
connections. Consider using a separate thread for long processing (e.g. with an
asynchronous ExecutorService). Note message processing callbacks run in a
dedicated thread, they do not impact other network frames, which run in their
own thread.

The following table sums up the main settings to create a Consumer:

Parameter Name Description Default

stream The stream to consume from. No default, mandatory setting.

offset The offset to start Consumjng OffsetSpecification#next()
from.

messageHandler The callback for inbound No default, mandatory setting.
messages.

name The consumer name (for offset null (no offset tracking)
tracking.)

25

Parameter Name

AutoTrackingStrategy

AutoTrackingStrategy#messageCo
untBeforeStorage

AutoTrackingStrategy#flushInte
rval

ManualTrackingStrategy

ManualTrackingStrategy#checkIn
terval

noTrackingStrategy

subscriptionListener

flow

flowf#finitialCredits

flow#strategy

Description

Enable and configure the auto-
tracking strategy.

Number of messages before
storing.

Interval to check and store the
last received offset in case of
inactivity.

Enable and configure the
manual tracking strategy.

Interval to check if the last
requested stored offset has
been actually stored.

Disable server-side offset
tracking even if a name is
provided. Useful when single
active consumer is enabled and
an external store is used for
offset tracking.

A callback before the
subscription is created. Useful
when using an external store
for offset tracking.

Configuration helper for flow
control.

Number of credits when the
subscription is created. Increase
for higher throughput at the
expense of memory usage.

The ConsumerFlowStrategy to use.

Why is my consumer not consuming?

Default

This is the default tracking
strategy if a consumer name is
provided.

10,000

Duration.ofSeconds(5)

Disabled by default.

Duration.ofSeconds(5)

false

null

ConsumerFlowStrategy#icreditOnC
hunkArrival(1)

A consumer starts consuming at the very end of a stream by default (next offset).
This means the consumer will receive messages as soon as a producer publishes to

NOTE

the stream. This also means that if no producers are currently publishing to the

stream, the consumer will stay idle, waiting for new messages to come in. Use the
ConsumerBuilder#offset(OffsetSpecification) to change the default behavior and
see the offset section to find out more about the different types of offset

specification.

26

Specifying an Offset

The offset is the place in the stream where the consumer starts consuming from. The possible
values for the offset parameter are the following:

OffsetSpecification.first(): starting from the first available offset. If the stream has not been
truncated, this means the beginning of the stream (offset 0).

OffsetSpecification.last(): starting from the end of the stream and returning the last chunk of
messages immediately (if the stream is not empty).

OffsetSpecification.next(): starting from the next offset to be written. Contrary to
OffsetSpecification.last(), consuming with OffsetSpecification.next() will not return
anything if no-one is publishing to the stream. The broker will start sending messages to the
consumer when messages are published to the stream.

OffsetSpecification.offset(offset): starting from the specified offset. 0 means consuming from
the beginning of the stream (first messages). The client can also specify any number, for
example the offset where it left off in a previous incarnation of the application.

OffsetSpecification.timestamp(timestamp): starting from the messages stored after the specified
timestamp. Note consumers can receive messages published a bit before the specified
timestamp. Application code can filter out those messages if necessary.

What is a chunk of messages?

A chunk is simply a batch of messages. This is the storage and transportation unit

NOTE used in RabbitMQ Stream, that is messages are stored contiguously in a chunk and
they are delivered as part of a chunk. A chunk can be made of one to several
thousands of messages, depending on the ingress.

The following figure shows the different offset specifications in a stream made of 2 chunks:

Lol 2] af||Ls)ls][7]
Chunk 1 * Chunk 2
FIRST OFFSET 3 LAST NEXT

Figure 1. Offset specifications in a stream made of 2 chunks

Each chunk contains a timestamp of its creation time. This is this timestamp the broker uses to find
the appropriate chunk to start from when using a timestamp specification. The broker chooses the
closest chunk before the specified timestamp, that is why consumers may see messages published a

bit before what they specified.

Tracking the Offset for a Consumer

RabbitMQ Stream provides server-side offset tracking. This means a consumer can track the offset
it has reached in a stream. It allows a new incarnation of the consumer to restart consuming where

it left off. All of this without an extra datastore, as the broker stores the offset tracking information.

Offset tracking works in 2 steps:

* the consumer must have a name. The name is set with ConsumerBuilder#name(String). The name
can be any value (under 256 characters) and is expected to be unique (from the application
point of view). Note neither the client library, nor the broker enforces uniqueness of the name:
if 2 Consumer Java instances share the same name, their offset tracking will likely be interleaved,
which applications usually do not expect.

* the consumer must periodically store the offset it has reached so far. The way offsets are
stored depends on the tracking strategy: automatic or manual.

Whatever tracking strategy you use, a consumer must have a name to be able to store offsets.

Automatic Offset Tracking

The following snippet shows how to enable automatic tracking with the defaults:

Using automatic tracking strategy with the defaults

Consumer consumer =
environment.consumerBuilder()

.stream("my-stream")

.name("application-1") @

.autoTrackingStrategy() @

.builder()

.messageHandler ((context, message) -> {
// message handling code...

1))
.build();

@ Set the consumer name (mandatory for offset tracking)

@ Use automatic tracking strategy with defaults
The automatic tracking strategy has the following available settings:

* message count before storage: the client will store the offset after the specified number of
messages, right after the execution of the message handler. The default is every 10,000 messages.

+ flush interval: the client will make sure to store the last received offset at the specified interval.
This avoids having pending, not stored offsets in case of inactivity. The default is 5 seconds.

Those settings are configurable, as shown in the following snippet:

Configuring the automatic tracking strategy

Consumer consumer =
environment.consumerBuilder()
.stream("my-stream")
.name("application-1") @
.autoTrackingStrategy() @
.messageCountBeforeStorage(50_000) ®
.flushInterval(Duration.ofSeconds(10)) @

28

.builder()
.messageHandler ((context, message) -> {
// message handling code...

1))
.build();

@ Set the consumer name (mandatory for offset tracking)
@ Use automatic tracking strategy
® Store every 50,000 messages

@ Make sure to store offset at least every 10 seconds

Note the automatic tracking is the default tracking strategy, so if you are fine with its defaults, it is
enabled as soon as you specify a name for the consumer:

Setting only the consumer name to enable automatic tracking

Consumer consumer =
environment.consumerBuilder()
.stream("my-stream")
.name("application-1") @
.messageHandler ((context, message) -> {
// message handling code...

1))
.build();

@ Set only the consumer name to enable automatic tracking with defaults

Automatic tracking is simple and provides good guarantees. It is nevertheless possible to have more
fine-grained control over offset tracking by using manual tracking.

Manual Offset Tracking

The manual tracking strategy lets the developer in charge of storing offsets whenever they want,
not only after a given number of messages has been received and supposedly processed, like
automatic tracking does.

The following snippet shows how to enable manual tracking and how to store the offset at some
point:

Using manual tracking with defaults

Consumer consumer =
environment.consumerBuilder()
.stream("my-stream")
.name("application-1") @
.manualTrackingStrategy() @
.builder()
.messageHandler ((context, message) -> {
// message handling code...

29

if (conditionToStore()) {
context.storeOffset(); @

}
1))
.build();

@ Set the consumer name (mandatory for offset tracking)
@ Use manual tracking with defaults

® Store the current offset on some condition

Manual tracking has only one setting: the check interval. The client checks that the last requested
stored offset has been actually stored at the specified interval. The default check interval is 5
seconds.

The following snippet shows the configuration of manual tracking:

Configuring manual tracking strategy

Consumer consumer =
environment.consumerBuilder()
.stream("my-stream")
.name("application-1") @
.manualTrackingStrategy() @
.checkInterval(Duration.ofSeconds(10)) &
.builder()
.messageHandler ((context, message) -> {
// message handling code...

if (conditionToStore()) {
context.storeOffset(); @

}
1))
.build();

@ Set the consumer name (mandatory for offset tracking)

@ Use manual tracking with defaults

® Check last requested offset every 10 seconds

@ Store the current offset on some condition

The snippet above uses MessageHandler.Context#istoreOffset() to store at the offset of the current

message, but it is possible to store anywhere in the stream = with
MessageHandler.Context#consumer ()#store(long) or simply Consumer#store(long).

Considerations On Offset Tracking

When to store offsets? Avoid storing offsets too often or, worse, for each message. Even though
offset tracking is a small and fast operation, it will make the stream grow unnecessarily, as the
broker persists offset tracking entries in the stream itself.

30

A good rule of thumb is to store the offset every few thousands of messages. Of course, when the
consumer will restart consuming in a new incarnation, the last tracked offset may be a little behind
the very last message the previous incarnation actually processed, so the consumer may see some
messages that have been already processed.

A solution to this problem is to make sure processing is idempotent or filter out the last duplicated
messages.

Is the offset a reliable absolute value? Message offsets may not be contiguous. This implies that the
message at offset 500 in a stream may not be the 501 message in the stream (offsets start at 0).
There can be different types of entries in a stream storage, a message is just one of them. For
example, storing an offset creates an offset tracking entry, which has its own offset.

This means one must be careful when basing some decision on offset values, like a modulo to
perform an operation every X messages. As the message offsets have no guarantee to be contiguous,
the operation may not happen exactly every X messages.

Subscription Listener

The client provides a SubscriptionListener interface callback to add behavior before a subscription
is created. This callback can be used to customize the offset the client library computed for the
subscription. The callback is called when the consumer is first created and when the client has to
re-subscribe (e.g. after a disconnection or a topology change).

WARNING This API is experimental, it is subject to change.

It is possible to use the callback to get the last processed offset from an external store, that is not
using the server-side offset tracking feature RabbitMQ Stream provides. The following code snippet
shows how this can be done (note the interaction with the external store is not detailed):

Using an external store for offset tracking with a subscription listener

Consumer consumer = environment.consumerBuilder()
.stream("my-stream")
.subscriptionListener(subscriptionContext -> { @
long offset = getOffsetFromExternalStore(); @
subscriptionContext.offsetSpecification(0OffsetSpecification.offset(offset + 1
) @
b
.messageHandler ((context, message) -> {
// message handling code...

storeOffsetInExternalStore(context.offset()); @

}
.build();

@ Set subscription listener

@ Get offset from external store

31

® Set offset to use for the subscription

@ Store the offset in the external store after processing

When using an external store for offset tracking, it is no longer necessary to set a name and an
offset strategy, as these only apply when server-side offset tracking is in use.

Using a subscription listener can also be useful to have more accurate offset tracking on re-
subscription, at the cost of making the application code slightly more complex. This requires a good
understanding on how and when subscription occurs in the client, and so when the subscription
listener is called:

 for a consumer with no name (server-side offset tracking disabled)

- on the first subscription (when the consumer is created): the offset specification is the one
specified with ConsumerBuilderfoffset(OffsetSpecification), the default being
OffsetSpecification#inext()

o on re-subscription (after a disconnection or topology change): the offset specification is the
offset of the last dispatched message

 for a consumer with a name (server-side offset tracking enabled)

- on the first subscription (When the consumer is created): the server-side stored offset (if
any) overrides the value specified with ConsumerBuilder#offset(0ffsetSpecification)

> on re-subscription (after a disconnection or topology change): the server-side stored offset is
used

The subscription listener comes in handy on re-subscription. The application can track the last
processed offset in-memory, with an AtomicLong for example. The application knows exactly when a
message is processed and updates its in-memory tracking accordingly, whereas the value computed
by the client may not be perfectly appropriate on re-subscription.

Let’s take the example of a named consumer with an offset tracking strategy that is lagging because
of bad timing and a long flush interval. When a glitch happens and triggers the re-subscription, the
server-side stored offset can be quite behind what the application actually processed. Using this
server-side stored offset can lead to duplicates, whereas using the in-memory, application-specific
offset tracking variable is more accurate. A custom SubscriptionListener lets the application
developer uses what’s best for the application if the computed value is not optimal.

Flow Control

This section covers how a consumer can tell the broker when to send more messages.

By default, the broker keeps sending messages as long as messages are processed and the
MessageHandler#thandle(Context, Message) method returns. This strategy works fine if message
processing is fast enough. If message processing takes longer, one can be tempted to process
messages in parallel with an ExecutorService. This will make the handle method return immediately
and the broker will keep sending messages, potentially overflowing the consumer.

What we miss in the parallel processing case is a way to tell the library we are done processing a
message and that we are ready at some point to handle more messages. This is the goal of the

32

MessageHandler.Context#processed() method.

This method is by default a no-op because the default flow control strategy keeps asking for more
messages as soon as message processing is done. This method gets some real behavior to control the
flow of messages when an appropriate ConsumerFlowStrategy is set ConsumerBuilder#flow(). The
following code snippet shows how to set a handy consumer flow strategy:

Setting a consumer flow control strategy

Consumer consumer = environment.consumerBuilder()
.stream("my-stream")
.flow()
.strategy(ConsumerFlowStrategy.creditWhenHalfMessagesProcessed()) @
.builder()
.messageHandler ((context, message) -> {
// message handling code (possibly asynchronous)...
context.processed(); @

1))
.build();

@ Set the flow control strategy

@ Make sure to call Context#iprocessed()

In the example we set up the creditWhenHalfMessagesProcessed strategy which asks for more
messages once half of the current messages have been marked as processed. The broker does not
send messages one by one, it sends chunks of messages. A chunk of messages can contain 1 to
several thousands of messages. So with the strategy set above, once processed() has been called for
half of the messages of the current chunk, the library will ask the broker for another one (it will
provide a credit for the subscription). By doing this, the next chunk should arrive by the time we
are done with the other half of the current chunk. This way the consumer is neither overwhelmed
nor idle.

The ConsumerFlowStrategy interface provides some static helpers to configure the appropriate
strategy.

Additional notes on consumer flow control:

* Make sure to call the processed() method once you set up a ConsumerFlowStrategy. The method
is a no-op by default, but it is essential to call it with count-based strategies like
creditWhenHalfMessagesProcessed or creditOnProcessedMessageCount. No calling it will stop the
dispatching of messages.

» Make sure to call processed() only once. Whether the method is idempotent depends on the flow
strategy implementation. Apart from the default one, the implementations the library provides
does not make processed() idempotent.

Single Active Consumer

WARNING Single Active Consumer requires RabbitMQ 3.11 or more.

33

When the single active consumer feature is enabled for several consumer instances sharing the
same stream and name, only one of these instances will be active at a time and so will receive
messages. The other instances will be idle.

The single active consumer feature provides 2 benefits:

* Messages are processed in order: there is only one consumer at a time.
* Consumption continuity is maintained: a consumer from the group will take over if the active
one stops or crashes.

A typical sequence of events would be the following:

» Several instances of the same consuming application start up.

» Each application instance registers a single active consumer. The consumer instances share the
same name.

* The broker makes the first registered consumer the active one.

* The active consumer receives and processes messages, the other consumer instances remain
idle.

» The active consumer stops or crashes.
e The broker chooses the consumer next in line to become the new active one.

* The new active consumer starts receiving messages.

The next figures illustrates this mechanism. There can be only one active consumer:

consumer Active
| .

stream : consumer : Inactive
| .

1 consumer : Inactive

Figure 2. The first registered consumer is active, the next ones are inactive

The broker rolls over to another consumer when the active one stops or crashes:

34

| consumer ! Closed
stream consumer Active
| |

————— consumer ! Inactive

Figure 3. When the active consumer stops, the next in line becomes active

Note there can be several groups of single active consumers on the same stream. What makes them
different from each other is the name used by the consumers. The broker deals with them
independently. Let’s use an example. Imagine 2 different app-1 and app-2 applications consuming
from the same stream, with 3 identical instances each. Each instance registers 1 single active
consumer with the name of the application. We end up with 3 app-1 consumers and 3 app-2
consumers, 1 active consumer in each group, so overall 6 consumers and 2 active ones, all of this on
the same stream.

Let’s see now the API for single active consumer.

Enabling Single Active Consumer

Use the ConsumerBuilder#singleActiveConsumer () method to enable the feature:

Enabling single active consumer

Consumer consumer = environment.consumerBuilder()
.stream("my-stream")
.name("application-1") @
.singleActiveConsumer() @
.messageHandler ((context, message) -> {
// message handling code...

}
.build();

@ Set the consumer name (mandatory to enable single active consumer)

@ Enable single active consumer

With the configuration above, the consumer will take part in the application-1 group on the my-
stream stream. If the consumer instance is the first in a group, it will get messages as soon as there
are some available. If it is not the first in the group, it will remain idle until it is its turn to be active
(likely when all the instances registered before it are gone).

Offset Tracking

Single active consumer and offset tracking work together: when the active consumer goes away,
another consumer takes over and resumes when the former active left off. Well, this is how things

35

should work and luckily this is what happens when using server-side offset tracking. So as long as
you use automatic offset tracking or manual offset tracking, the handoff between a former active
consumer and the new one will go well.

The story is different is you are using an external store for offset tracking. In this case you need to
tell the client library where to resume from and you can do this by implementing the
ConsumerUpdatelistener APL.

Reacting to Consumer State Change

The broker notifies a consumer that becomes active before dispatching messages to it. The broker
expects a response from the consumer and this response contains the offset the dispatching should
start from. So this is the consumer’s responsibility to compute the appropriate offset, not the
broker’s. The default behavior is to look up the last stored offset for the consumer on the stream.
This works when server-side offset tracking is in use, but it does not when the application chose to
use an external store for offset tracking. In this case, it is possible to wuse the
ConsumerBuilder#consumerUpdateListener(ConsumerUpdatelistener) method like demonstrated in the
following snippet:

Fetching the last stored offset from an external store in the consumer update listener callback

Consumer consumer = environment.consumerBuilder()
.stream("my-stream")
.name("application-1") @
.singleActiveConsumer() @
.noTrackingStrategy() ®
.consumerUpdateListener(context -> { @
long offset = getOffsetFromExternalStore(); ®
return OffsetSpecification.offset(offset + 1); ®

b
.messageHandler ((context, message) -> {
// message handling code...

storeQffsetInExternalStore(context.offset());

1))
.build();

@ Set the consumer name (mandatory to enable single active consumer)
@ Enable single active consumer

® Disable server-side offset tracking

@ Set the consumer update listener

® Fetch last offset from external store

® Return the offset to resume consuming from to the broker

Super Streams (Partitioned Streams)

WARNING Super Streams require RabbitMQ 3.11 or more.

36

A super stream is a logical stream made of several individual streams. In essence, a super stream is
a partitioned stream that brings scalability compared to a single stream.

The stream Java client uses the same programming model for super streams as with individual
streams, that is the Producer, Consumer, Message, etc API are still valid when super streams are in use.
Application code should not be impacted whether it uses individual or super streams.

Consuming applications can use super streams and single active consumer at the same time. The 2
features combined make sure only one consumer instance consumes from an individual stream at
a time. In this configuration, super streams provide scalability and single active consumer provides
the guarantee that messages of an individual stream are processed in order.

Super streams do not deprecate streams

Super streams are a partitioning solution. They are not meant to replace
individual streams, they sit on top of them to handle some use cases in a better
way. If the stream data is likely to be large — hundreds of gigabytes or even

WARNING terabytes, size remains relative — and even presents an obvious partition key
(e.g. country), a super stream can be appropriate. It can help to cope with the
data size and to take advantage of data locality for some processing use cases.
Remember that partitioning always comes with complexity though, even if the
implementation of super streams strives to make it as transparent as possible
for the application developer.

Topology

A super stream is made of several individual streams, so it can be considered a logical entity rather
than an actual physical entity. The topology of a super stream is based on the AMQP 0.9.1 model,
that is exchange, queues, and bindings between them. This does not mean AMQP resources are
used to transport or store stream messages, it means that they are used to describe the super stream
topology, that is the streams it is made of.

Let’s take the example of an invoices super stream made of 3 streams (i.e. partitions):

* an invoices exchange represents the super stream

* the invoices-0, invoices-1, invoices-2 streams are the partitions of the super stream (streams
are also AMQP queues in RabbitMQ)

* 3 bindings between the exchange and the streams link the super stream to its partitions and
represent routing rules

37

https://en.wikipedia.org/wiki/Partition_(database)
https://www.rabbitmq.com/tutorials/amqp-concepts.html

—p invoices-0

invoices 1

b invoices-1

exchange

T invoices-2

Figure 4. The topology of a super stream is defined with bindings between an exchange and queues

When a super stream is in use, the stream Java client queries this information to find out about the
partitions of a super stream and the routing rules. From the application code point of view, using a
super stream is mostly configuration-based. Some logic must also be provided to extract routing
information from messages.

Super Stream Creation

It is possible to create the topology of a super stream with any AMQP 0.9.1 library or with the
management plugin, but the rabbitmg-streams add_super_stream command is a handy shortcut. Here
is how to create an invoices super stream with 3 partitions:

Creating a super stream from the CLI

rabbitmg-streams add_super_stream invoices --partitions 3

Use rabbitmg-streams add_super_stream --help to learn more about the command.

Publishing to a Super Stream

When the topology of a super stream like the one described above has been set, creating a producer
for it is straightforward:

Creating a Producer for a Super Stream

Producer producer = environment.producerBuilder()
.superStream("invoices") @
.routing(message -> message.getProperties().getMessageIdAsString()) @
.producerBuilder()
build(); @
/] ...
producer.close(); @

@ Set the super stream name
@ Provide the logic to get the routing key from a message
® Create the producer instance

@ Close the producer when it’s no longer necessary

38

https://www.rabbitmq.com/management.html

Note that even though the invoices super stream is not an actual stream, its name must be used to
declare the producer. Internally the client will figure out the streams that compose the super
stream. The application code must provide the logic to extract a routing key from a message as a
Function<Message, String>. The client will hash the routing key to determine the stream to send the
message to (using partition list and a modulo operation).

The client uses 32-bit MurmurHash3 by default to hash the routing key. This hash function provides
good uniformity, performance, and portability, making it a good default choice, but it is possible to
specify a custom hash function:

Specifying a custom hash function

Producer producer = environment.producerBuilder()
.superStream("invoices")
.routing(message -> message.getProperties().getMessageIdAsString())
.hash(rk -> rk.hashCode()) @
.producerBuilder()
.build();

@ Use String#thashCode() to hash the routing key

Note using Java’s hashCode() method is a debatable choice as potential producers in other languages
are unlikely to implement it, making the routing different between producers in different
languages.

Resolving Routes with Bindings

Hashing the routing key to pick a partition is only one way to route messages to the appropriate
streams. The stream Java client provides another way to resolve streams, based on the routing key
and the bindings between the super stream exchange and the streams.

This routing strategy makes sense when the partitioning has a business meaning, e.g. with a
partition for a region in the world, like in the diagram below:

amer - -
invoices-amer
invoices emea . .
invoices-emea
exchange
apac - -
invoices-apac

Figure 5. A super stream with a partition for a region in a world

In such a case, the routing key will be a property of the message that represents the region:

39

https://en.wikipedia.org/wiki/MurmurHash

Enabling the "key" routing strategy

Producer producer = environment.producerBuilder()
.superStream("invoices")
.routing(msg -> msg.getApplicationProperties().get("region").toString()) @
key() @
.producerBuilder()

.build();

@ Extract the routing key
@ Enable the "key" routing strategy

Internally the client will query the broker to resolve the destination streams for a given routing key,
making the routing logic from any exchange type available to streams. Note the client caches
results, it does not query the broker for every message.

Using a Custom Routing Strategy

The solution that provides the most control over routing is using a custom routing strategy. This
should be needed only for specific cases.

Here is an excerpt of the RoutingStrategy interface:

The routing strategy interface
public interface RoutingStrategy {

/** Where to route a message. */
List<String> route(Message message, Metadata metadata);

/** Metadata on the super stream. */
interface Metadata {

List<String> partitions();

List<String> route(String routingKey);
}
¥

Note it is possible to route a message to several streams or even nowhere. The "hash" routing
strategy always routes to 1 stream and the "key" routing strategy can route to several streams.

The following code sample shows how to implement a simplistic round-robin RoutingStrategy and
use it in the producer. Note this implementation should not be used in production as the modulo
operation is not sign-safe for simplicity’s sake.

Setting a round-robin routing strategy

AtomicLong messageCount = new Atomiclong(@);
RoutingStrategy routingStrategy = (message, metadata) -> {

40

List<String> partitions = metadata.partitions();
String stream = partitions.get(
(int) messageCount.getAndIncrement() % partitions.size()

)i
return Collections.singletonlList(stream);

bt

Producer producer = environment.producerBuilder()
.superStream("invoices")
.routing(null) @
.strategy(routingStrategy) @
.producerBuilder()
.build();

@ No need to set the routing key extraction logic

@ Set the custom routing strategy

Deduplication

Deduplication for a super stream producer works the same way as with a single stream producer.
The publishing ID values are spread across the streams but this does affect the mechanism.

Consuming From a Super Stream

A super stream consumer is a composite consumer: it will look up the super stream partitions and
create a consumer for each or them. The programming model is the same as with regular
consumers for the application developer: their main job is to provide the application code to
process messages, that is a MessageHandler instance. The configuration is different though and this
section covers its subtleties. But let’s focus on the behavior of a super stream consumer first.

Super Stream Consumer in Practice

Imagine you have a super stream made of 3 partitions (individual streams). You start an instance of
your application, that itself creates a super stream consumer for this super stream. The super
stream consumer will create 3 consumers internally, one for each partition, and messages will flow
in your MessageHandler.

Imagine now that you start another instance of your application. It will do the exact same thing as
previously and the 2 instances will process the exact same messages in parallel. This may be not
what you want: the messages will be processed twice!

Having one instance of your application may be enough: the data are spread across several streams
automatically and the messages from the different partitions are processed in parallel from a single
OS process.

But if you want to scale the processing across several OS processes (or bare-metal machines, or
virtual machines) and you don’t want your messages to be processed several times as illustrated
above, you’ll have to enable the single active consumer feature on your super stream consumer.

The next subsections cover the basic settings of a super stream consumer and a dedicated section
covers how super stream consumers and single active consumer play together.

41

Declaring a Super Stream Consumer

Declaring a super stream consumer is not much different from declaring a single stream consumer.
The ConsumerBuilder#superStream(String) must be used to set the super stream to consume from:

Declaring a super stream consumer

Consumer consumer = environment.consumerBuilder()

.superStream("invoices") @
.messageHandler ((context, message) -> {
// message processing

1))
.build();

/] ...
consumer.close(); @

@ Set the super stream name

@ Close the consumer when it is no longer necessary

That’s all. The super stream consumer will take of the details (partitions lookup, coordination of the
single consumers, etc).

Offset Tracking

The semantic of offset tracking for a super stream consumer are roughly the same as for an
individual stream consumer. There are still some subtle differences, so a good understanding of
offset tracking in general and of the automatic and manual offset tracking strategies is
recommended.

Here are the main differences for the automatic/manual offset tracking strategies between single
and super stream consuming:

* automatic offset tracking: internally, the client divides the messageCountBeforeStorage setting by

42

the number of partitions for each individual consumer. Imagine a 3-partition super stream,
messageCountBeforeStorage set to 10,000, and 10,000 messages coming in, perfectly balanced
across the partitions (that is about 3,333 messages for each partition). In this case, the automatic
offset tracking strategy will not kick in, because the expected count message has not been
reached on any partition. Making the client divide messageCountBeforeStorage by the number of
partitions can be considered "more accurate" if the message are well balanced across the
partitions. A good rule of thumb is to then multiply the expected per-stream
messageCountBeforeStorage by the number of partitions, to avoid storing offsets too often. So the
default being 10,000, it can be set to 30,000 for a 3-partition super stream.

manual offset tracking: the MessageHandler.Context#storeOffset() method must be used, the
Consumer#store(long) will fail, because an offset value has a meaning only in one stream, not in
other streams. A call to MessageHandler.Context#storeOffset() will store the current message
offset in its stream, but also the offset of the last dispatched message for the other streams of the
super stream.

Single Active Consumer Support

WARNING Single Active Consumer requires RabbitMQ 3.11 or more.

As stated previously, super stream consumers and single active consumer provide scalability and
the guarantee that messages of an individual stream are processed in order.

Let’s take an example with a 3-partition super stream:

* You have an application that creates a super stream consumer instance with single active
consumer enabled.

* You start 3 instances of this application. An instance in this case is a JVM process, which can be
in a Docker container, a virtual machine, or a bare-metal server.

* As the super stream has 3 partitions, each application instance will create a super stream
consumer that maintains internally 3 consumer instances. That is 9 Java instances of consumer
overall. Such a super stream consumer is a composite consumer.

* The broker and the different application instances coordinate so that only 1 consumer instance
for a given partition receives messages at a time. So among these 9 consumer instances, only 3
are actually active, the other ones are idle or inactive.

* If one of the application instances stops, the broker will rebalance its active consumer to one of
the other instances.

The following figure illustrates how the client library supports the combination of the super stream
and single active consumer features. It uses a composite consumer that creates an individual
consumer for each partition of the super stream. If there is only one single active consumer
instance with a given name for a super stream, each individual consumer is active.

invoices-0
consumer Active
invoices
invoices-1 consumer Active
super stream
consumer Active
invoices-2 Composite Consumer

Figure 6. A single active consumer on a super stream is a composite consumer that creates an individual
consumer for each partition

Imagine now we start 3 instances of the consuming application to scale out the processing. The
individual consumer instances spread out across the super stream partitions and only one is active
for each partition, as illustrated in the following figure:

43

consumer Active

consumer Inactive

consumer Inactive

. : Composite Consumer
invoices-0
consumer Inactive
invoices
invoices-1 consumer Active

super stream

consumer Inactive

invoices-2 Composite Consumer

consumer Inactive

consumer Inactive

consumer Active

Composite Consumer

Figure 7. Consumer instances spread across the super stream partitions and are activated accordingly
After this overview, let’s see the API and the configuration details.

The following snippet shows how to declare a single active consumer on a super stream with the
ConsumerBuilder#superStream(String) and ConsumerBuilder#singleActiveConsumer () methods:

Enabling single active consumer on a super stream

Consumer consumer = environment.consumerBuilder()
.superStream("invoices") @
.name("application-1") @
.singleActiveConsumer() @

.messageHandler ((context, message) -> {
// message processing
b
.build();
/] ...

44

@ Set the super stream name
@ Set the consumer name (mandatory to enable single active consumer)

® Enable single active consumer

Note it is mandatory to specify a name for the consumer. This name will be used to identify the
group of consumer instances and make sure only one is active for each partition. The name is also
the reference for offset tracking.

The example above uses by default automatic offset tracking. With this strategy, the client library
takes care of offset tracking when consumers become active or inactive. It looks up the latest stored
offset when a consumer becomes active to start consuming at the appropriate offset and it stores
the last dispatched offset when a consumer becomes inactive.

The story is not the same with manual offset tracking as the client library does not know which
offset it should store when a consumer becomes inactive. The application developer can use the
ConsumerUpdatelListener) callback to react appropriately when a consumer changes state. The
following snippet illustrates the use of the ConsumerUpdatelListener callback:

Using manual offset tracking for a super stream single active consumer

Consumer consumer =
environment.consumerBuilder()
.superStream("invoices") @
.name("application-1") @
.singleActiveConsumer() ®
.manualTrackingStrategy() @
.builder()
.consumerUpdatelListener(context -> { ®
if(context.isActive()) { ®
try {
return OffsetSpecification.offset(
context.consumer().stored0ffset() + 1
e
} catch (NoOffsetException e) {
return OffsetSpecification.next();
}

} else {
context.consumer().store(lastProcessedOffsetForThisStream); @
return null;

}

b

.messageHandler ((context, message) -> {
// message handling code...

if (conditionToStore()) {
context.storeOffset();

)
.build();

45

/] ...

@ Set the super stream name

@ Set the consumer name (mandatory to enable single active consumer)

® Enable single active consumer

@ Enable manual offset tracking strategy

® Set ConsumerUpdatelListener

® Return stored offset + 1 or default when consumer becomes active

@ Store last processed offset for the stream when consumer becomes inactive

Store the current offset on some condition

The ConsumerUpdatelListener callback must return the offset to start consuming from when a
consumer becomes active. This is what the code above does: it checks if the consumer is active with
ConsumerUpdateListener.Context#isActive() and looks up the last stored offset. If there is no stored
offset yet, it returns a default value, Of fsetSpecification#next() here.

When a consumer becomes inactive, it should store the last processed offset, as another consumer
instance will take over elsewhere. It is expected this other consumer runs the exact same code, so it
will execute the same sequence when it becomes active (looking up the stored offset, returning the
value + 1).

Note the ConsumerUpdatelistener is called for a partition, that is an individual stream. The
application code should take care of maintaining a reference of the last processed offset for each
partition of the super stream, e.g. with a Map<String, Long> (partition-to-offset map). To do so, the
context parameter of the MessageHandler and ConsumerUpdatelListener callbacks provide a stream()
method.

RabbitMQ Stream provides server-side offset tracking, but it is possible to use an external store to
track offsets for streams. The ConsumerUpdatelistener callback is still your friend in this case. The
following snippet shows how to leverage it when an external store is in use:

Using external offset tracking for a super stream single active consumer

Consumer consumer = environment.consumerBuilder()
.superStream("invoices") @
.name("application-1") @
.singleActiveConsumer() ®
.noTrackingStrategy() @
.consumerUpdateListener(context -> { ®

if (context.isActive()) { ®
long offset = getOffsetFromExternalStore();
return OffsetSpecification.offset(offset + 1);
}
return null; @
b
.messageHandler ((context, message) -> {
// message handling code...

46

storeQffsetInExternalStore(context.stream(), context.offset());

1))
.build();

@ Set the super stream name

@ Set the consumer name (mandatory to enable single active consumer)
® Enable single active consumer

@ Disable server-side offset tracking

® Set ConsumerUpdateListener

® Use external store for stored offset when consumer becomes active

@ Assume offset already stored when consumer becomes inactive

Use external store for offset tracking
Here are the takeaway points of this code:

* Even though there is no server-side offset tracking to use it, the consumer must still have a
name to identify the group it belongs to. The external offset tracking mechanism is free to use
the same name or not.

 Calling ConsumerBuilder#noTrackingStrategy() is necessary to disable server-side offset tracking,
or the automatic tracking strategy will kick in.

* The snippet does not provide the details, but the offset tracking mechanism seems to store the
offset for each message. The external store must be able to cope with the message rate in a real-
world scenario.

» The ConsumerUpdatelListener callback returns the last stored offset + 1 when the consumer
becomes active. This way the broker will resume the dispatching at this location in the stream.

* A well-behaved ConsumerUpdatelListener must make sure the last processed offset is stored when
the consumer becomes inactive, so that the consumer that will take over can look up the offset
and resume consuming at the right location. Our ConsumerUpdatelListener does not do anything
when the consumer becomes inactive (it returns null): it can afford this because the offset is
stored for each message. Make sure to store the last processed offset when the consumer
becomes inactive to avoid duplicates when the consumption resumes elsewhere.

Advanced Topics

Filtering

WARNING Filtering requires RabbitMQ 3.13 or more.
RabbitMQ Stream provides a server-side filtering feature that avoids reading all the messages of a
stream and filtering only on the client side. This helps to save network bandwidth when a

consuming application needs only a subset of messages, e.g. the messages from a given
geographical region.

47

The filtering feature works as follows:

* each message is published with an associated filter value
* a consumer that wants to enable filtering must:
- define one or several filter values

- define some client-side filtering logic

Why does the consumer need to define some client-side filtering logic? Because the server-side
filtering is probabilistic: messages that do not match the filter value(s) can still be sent to the
consumer. The server uses a Bloom filter, a space-efficient probabilistic data structure, where false
positives are possible. Despite this, the filtering saves some bandwidth, which is its primary goal.

Filtering on the Publishing Side

Filtering on the publishing side consists in defining some logic to extract the filter value from a
message. The following snippet shows how to extract the filter value from an application property:

Declaring a producer with logic to extract a filter value from each message

Producer producer = environment.producerBuilder()
.stream("invoices")
.filterValue(msg ->
msg.getApplicationProperties().get("state").toString()) @
.build();

@ Get filter value from state application property

Note the filter value can be null: the message is then published in a regular way. It is called in this
context an unfiltered message.

Filtering on the Consuming Side

A consumer needs to set up one or several filter values and some filtering logic to enable filtering.
The filtering logic must be consistent with the filter values. In the next snippet, the consumer wants
to process only messages from the state of California. It sets a filter value to california and a
predicate that accepts a message only if the state application properties is california:

Declaring a consumer with a filter value and filtering logic

String filterValue = "california";
Consumer consumer = environment.consumerBuilder()
.stream("invoices")
.filter()
.values(filterValue) @
.postFilter(msg ->
filterValue.equals(msg.getApplicationProperties().get("state"))) @
.builder()
.messageHandler((ctx, msg) -> { })
.build();

48

https://en.wikipedia.org/wiki/Bloom_filter

@ Set filter value

@ Set filtering logic

The filter logic is a Predicate<Message>. It must return true if a message is accepted, following the
same semantics as java.util.stream.Streamfffilter(Predicate).

As stated above, not all messages must have an associated filter value. Many applications may not
need some filtering, so they can publish messages the regular way. So a stream can contain
messages with and without an associated filter value.

By default, messages without a filter value (a.k.a unfiltered messages) are not sent to a consumer
that enabled filtering.

But what if a consumer wants to process messages with a filter value and messages without any
filter value as well? It must use the matchUnfiltered() method in its declaration and also make sure
to keep the filtering logic consistent:

Getting unfiltered messages as well when enabling filtering

String filterValue = "california";
Consumer consumer = environment.consumerBuilder()
.stream("invoices")
filter()
.values(filterValue) @
.matchUnfiltered() @
.postFilter(msg ->
filterValue.equals(msg.getApplicationProperties().get("state"))
|| 'msg.getApplicationProperties().containsKey("state") @

)
.builder()
.messageHandler((ctx, msg) -> { })
.build();

@ Request messages from California
@ Request messages without a filter value as well
® Let both types of messages pass

In the example above, the filtering logic has been adapted to let pass california messages and
messages without a state set as well.

Considerations on Filtering

As stated previously, the server can send messages that do not match the filter value(s) set by
consumers. This is why application developers must be very careful with the filtering logic they
define to avoid processing unwanted messages.

What are good candidates for filter values? Unique identifiers are not: if you know a given message
property will be unique in a stream, do not use it as a filter value. A defined set of values shared
across the messages is a good candidate: geographical locations (e.g. countries, states), document

49

types in a stream that stores document information (e.g. payslip, invoice, order), categories of
products (e.g. book, luggage, toy).

Cardinality of filter values can be from a few to a few thousands. Extreme cardinality (a couple or
dozens of thousands) can make filtering less efficient.

Using Native epoll

The stream Java client uses the Netty network framework and its Java NIO transport
implementation by default. This should be a reasonable default for most applications.

Netty also allows using JNI transports. They are less portable than Java NIO, but they can be more
performant for some workloads (even though the RabbitMQ team has not seen any significant
improvement in their own tests).

The Linux epoll transport is a popular choice, so we’ll see how to configure with the stream Java
client. Other JNI transports can be configured in the same way:.

The native transport dependency must be added to the dependency manager. We must pull the
native binaries compiled for our OS and architecture, in our example Linux x86-64, so we are using
the 1inux-x86_64 classifier. Here is the declaration for Maven:

Declaring the Linux x86-64 native epoll transport dependency with Maven
<dependencies>

<dependency>
<groupId>io.netty</groupld>
<artifactId>netty-transport-native-epoll</artifactId>
<version>4.1.99.Final</version>
<classifier>linux-x86_64</classifier>

</dependency>

</dependencies>

And for Gradle:

Declaring the Linux x86-64 native epoll transport dependency with Gradle

dependencies {
compile "io.netty:netty-transport-native-epoll:4.1.99.Final:1linux-x86_64"

}

The native epoll transport is set up when the environment is configured:

Configuring the native epoll transport in the environment

EventLoopGroup epollEventLoopGroup = new EpollEventLoopGroup(); @
Environment environment = Environment.builder()

.netty() @

50

https://netty.io/
https://netty.io/wiki/native-transports.html
https://en.wikipedia.org/wiki/Epoll
https://en.wikipedia.org/wiki/Epoll
https://en.wikipedia.org/wiki/Epoll

.eventLoopGroup(epollEventLoopGroup) @
.bootstrapCustomizer(b -> b.channel(Epol1lSocketChannel.class)) @
.environmentBuilder()

.build();

@ Create the epoll event loop group (don’t forget to close it!)
@ Use the Netty configuration helper
® Set the event loop group

@ Set the channel class to use

Note the event loop group must be closed explicitly: the environment will not close it itself as it is
provided externally.

Building the Client

You need JDK 1.8 or more installed.

To build the JAR file:
./mvnw clean package -DskipITs -DskipTests
To launch the test suite (requires a local RabbitMQ node with stream plugin enabled):

./mvnw verify -Drabbitmqctl.bin=/path/to/rabbitmqctl

The Performance Tool

The library contains also a performance tool to test the RabbitMQ Stream plugin. It is usable as an
uber JAR downloadable from GitHub Release or as a Docker image. It can be built separately as
well.

Snapshots are on GitHub release as well. Use the pivotalrabbitmq/stream-perf-test:dev image to use
the latest snapshot in Docker.

Using the Performance Tool

With Docker

The performance tool is available as a Docker image. You can use the Docker image to list the
available options:

Listing the available options of the performance tool

docker run -it --rm pivotalrabbitmqg/stream-perf-test --help

31

https://github.com/rabbitmq/rabbitmq-stream-java-client/releases
https://hub.docker.com/r/pivotalrabbitmq/stream-perf-test
https://github.com/rabbitmq/rabbitmq-java-tools-binaries-dev/releases
https://hub.docker.com/r/pivotalrabbitmq/stream-perf-test

There are all sorts of options, if none is provided, the tool will start publishing to and consuming
from a stream created only for the test.

When using Docker, the container running the performance tool must be able to connect to the
broker, so you have to figure out the appropriate Docker configuration to make this possible. You
can have a look at the Docker network documentation to find out more.

Docker on macOS

Docker runs on a virtual machine when using macOS, so do not expect high
performance when using RabbitMQ Stream and the performance tool inside Docker
on a Mac.

NOTE

We show next a couple of options to easily use the Docker image.

With Docker Host Network Driver

This is the simplest way to run the image locally, with a local broker running in Docker as well. The
containers use the host network, this is perfect for experimenting locally.

Running the broker and performance tool with the host network driver

run the broker

docker run -it --rm --name rabbitmq --network host rabbitmg:3.12

open another terminal and enable the stream plugin

docker exec rabbitmq rabbitmg-plugins enable rabbitmq_stream

run the performance tool

docker run -it --rm --network host pivotalrabbitmq/stream-perf-test

Docker Host Network Driver Support

NOTE According to Docker’s documentation, the host networking driver only works on
Linux hosts. Nevertheless, the commands above work on some Mac hosts.

With Docker Bridge Network Driver

Containers need to be able to communicate with each other with the bridge network driver, this
can be done by defining a network and running the containers in this network.

Running the broker and performance tool with the bridge network driver

create a network

docker network create stream-perf-test

run the broker

docker run -it --rm --network stream-perf-test --name rabbitmq rabbitmqg:3.12

open another terminal and enable the stream plugin

docker exec rabbitmq rabbitmg-plugins enable rabbitmq_stream

run the performance tool

docker run -it --rm --network stream-perf-test pivotalrabbitmq/stream-perf-test \
--uris rabbitmg-stream://rabbitmq:5552

32

https://docs.docker.com/network/
https://docs.docker.com/network/host/
https://docs.docker.com/network/bridge/

With the Java Binary

The Java binary is available on GitHub Release. Snaphots are available as well. To use the latest
snapshot:

wget https://github.com/rabbitmg/rabbitmq-java-tools-binaries-dev/releases/download/v-
stream-perf-test-latest/stream-perf-test-latest.jar

To launch a run:

$ java -jar stream-perf-test-latest.jar

17:51:26.207 [main] INFO c.r.stream.perf.StreamPerfTest - Starting producer

1, published 560277 msg/s, confirmed 554088 msg/s, consumed 556983 msg/s, latency
min/median/75th/95th/99th 2663/9799/13940/52304/57995 ps, chunk size 1125

2, published 770722 msg/s, confirmed 768209 msg/s, consumed 768585 msg/s, latency
min/median/75th/95th/99th 2454/9599/12206/23940/55519 ps, chunk size 1755

3, published 915895 msg/s, confirmed 914079 msg/s, consumed 916103 msg/s, latency
min/median/75th/95th/99th 2338/8820/11311/16750/52985 ps, chunk size 2121

4, published 1004257 msg/s, confirmed 1003307 msg/s, consumed 1004981 msg/s, latency
min/median/75th/95th/99th 2131/8322/10639/14368/45094 ps, chunk size 2228

5, published 1061380 msg/s, confirmed 1060131 msg/s, consumed 1061610 msg/s, latency
min/median/75th/95th/99th 2131/8247/10420/13905/37202 ps, chunk size 2379

6, published 1096345 msg/s, confirmed 1095947 msg/s, consumed 1097447 msg/s, latency
min/median/75th/95th/99th 2131/8225/10334/13722/33109 ps, chunk size 2454

7, published 1127791 msg/s, confirmed 1127032 msg/s, consumed 1128039 msg/s, latency
min/median/75th/95th/99th 1966/8150/10172/13500/2394@ ps, chunk size 2513

8, published 1148846 msg/s, confirmed 1148086 msg/s, consumed 1149121 msg/s, latency
min/median/75th/95th/99th 1966/8079/10135/13248/16771 ps, chunk size 2558

9, published 1167067 msg/s, confirmed 1166369 msg/s, consumed 1167311 msg/s, latency
min/median/75th/95th/99th 1966/8063/9986/12977/16757 ps, chunk size 2631

10, published 1182554 msg/s, confirmed 1181938 msg/s, consumed 1182804 msg/s, latency
min/median/75th/95th/99th 1966/7963/9949/12632/16619 ps, chunk size 2664

11, published 1197069 msg/s, confirmed 1196495 msg/s, consumed 1197291 msg/s, latency
min/median/75th/95th/99th 1966/7917/9955/12563/15386 ps, chunk size 2761

12, published 1206687 msg/s, confirmed 1206176 msg/s, consumed 1206917 msg/s, latency
min/median/75th/95th/99th 1966/7893/9975/12503/15280 ps, chunk size 2771

20

Summary: published 1279444 msg/s, confirmed 1279019 msg/s, consumed 1279019 msg/s,
latency 95th 12161 ps, chunk size 2910

The previous command will start publishing to and consuming from a stream stream that will be
created. The tool outputs live metrics on the console and write more detailed metrics in a stream-
perf-test-current.txt file that get renamed to stream-perf-test-yyyy-MM-dd-HHmmss.txt when the
run ends.

To see the options:

33

https://github.com/rabbitmq/rabbitmq-stream-java-client/releases
https://github.com/rabbitmq/rabbitmq-java-tools-binaries-dev/releases

java -jar stream-perf-test-latest.jar --help

The performance tool comes also with a completion script. You can download it and enable it in
your ~/.zshrc file:

alias stream-perf-test='java -jar target/stream-perf-test.jar'
source ~/.zsh/stream-perf-test_completion

Note the activation requires an alias which must be stream-perf-test. The command can be
anything though.

Common Usage

Connection

The performance tool connects by default to localhost, on port 5552, with default credentials (quest
/qguest), on the default / virtual host. This can be changed with the --uris option:

java -jar stream-perf-test.jar --uris rabbitmgq-stream://rabbitmq-1:5552

The URI follows the same rules as the AMQP 0.9.1 URI, except the protocol must be rabbitmq-stream.
The next command shows how to set up the different elements of the URI:

java -jar stream-perf-test.jar \
--uris rabbitmq-stream://quest:quest@localhost:5552/%2f

The option accepts several values, separated by commas. By doing so, the tool will be able to pick
another URI for its "locator" connection, in case a node crashes:

java -jar stream-perf-test.jar \
--uris rabbitmg-stream://rabbitmq-1:5552, rabbitmg-stream://rabbitmq-2:5552

Note the tool uses those URIs only for management purposes, it does not use them to distribute
publishers and consumers across a cluster.

It is also possible to enable TLS by using the rabbitmq-stream+tls scheme:

java -jar stream-perf-test.jar \
--uris rabbitmq-stream+tls://quest:quest@localhost:5551/%2f

Note the performance tool will automatically configure the client to trust all server certificates and
to not use a private key (for client authentication).

54

https://github.com/rabbitmq/rabbitmq-java-tools-binaries-dev/releases/download/v-stream-perf-test-latest/stream-perf-test-latest_completion
https://www.rabbitmq.com/uri-spec.html

Have a look at the connection logic section in case of connection problem.

Publishing Rate

It is possible to limit the publishing rate with the --rate option:

java -jar stream-perf-test.jar --rate 10000

RabbitMQ Stream can easily saturate the resources of the hardware, it can especially max out the
storage 10. Reasoning when a system is under severe constraints can be difficult, so setting a low
publishing rate can be a good idea to get familiar with the performance tool and the semantics of
streams.

Number of Producers and Consumers

You can set the number of producers and consumers with the --producers and --consumers options,
respectively:

java -jar stream-perf-test.jar --producers 5 --consumers 5

With the previous command, you should see a higher consuming rate than publishing rate. It is
because the 5 producers publish as fast as they can and each consumer consume the messages from
the 5 publishers. In theory the consumer rate should be 5 times the publishing rate, but as stated
previously, the performance tool may put the broker under severe constraints, so the numbers may
not add up.

You can set a low publishing rate to verify this theory:

java -jar stream-perf-test.jar --producers 5 --consumers 5 --rate 10000

With the previous command, each publisher should publish 10,000 messages per second, that is
50,000 messages per second overall. As each consumer consumes each published messages, the
consuming rate should be 5 times the publishing rate, that is 250,000 messages per second. Using a
small publishing rate should let plenty of resources to the system, so the rates should tend towards
those values.

Streams

The performance tool uses a stream stream by default, the --streams option allows specifying
streams that the tool will try to create. Note producer and consumer counts must be set accordingly,
as they are not spread across the stream automatically. The following command will run a test with
3 streams, with a producer and a consumer on each of them:

java -jar stream-perf-test.jar --streams streaml,stream2,stream3 \
--producers 3 --consumers 3

55

The stream creation process has the following semantics:

* the tool always tries to create streams.

* if the target streams already exist and have the exact same properties as the ones the tool uses
(see retention below), the run will start normally as stream creation is idempotent.

if the target streams already exist but do not have the exact same properties as the ones the tool
uses, the run will start normally as well, the tool will output a warning.

 for any other errors during creation, the run will stop.

* the streams are not deleted after the run.

« if you want the tool to delete the streams after a run, use the --delete-streams flag.
Specifying streams one by one can become tedious as their number grows, so the --stream-count
option can be combined with the --streams option to specify a number or a range and a stream
name pattern, respectively. The following table shows the usage of these 2 options and the resulting

exercised streams. Do not forget to also specify the appropriate number of producers and
consumers if you want all the declared streams to be used.

Options

--stream-count 5 --streams
stream

--stream-count 5 --streams
stream-%d

--stream-count 10 --streams
stream-%d

--stream-count 10 --streams
stream-%02d

--stream-count 10 --streams
stream

--stream-count 50-500
--streams stream-%03d

--stream-count 50-500

Publishing Batch Size

Computed Streams

stream-1,stream-2,stream-
3,stream-4,stream-5

stream-1,stream-2,stream-
3,stream-4,stream-5

stream-1,stream-2,stream-3, -,
stream-10

stream-01,stream-02,stream-
03,:+, stream-10
stream-01,stream-02,stream-
03,:+, stream-10
stream-050,stream-051,stream-

052,:++, stream-500

stream-050,stream-051,stream-
052,:++, stream-500

Details

Stream count starts at 1.

Possible to specify a Java printf-
style format string.

Not bad, but not correctly
sorted alphabetically.

Better for sorting.

The default format string
handles the sorting issue.

Ranges are accepted.

Default format string.

The default publishing batch size is 100, that is a publishing frame is sent every 100 messages. The
following command sets the batch size to 50 with the --batch-size option:

java -jar stream-perf-test.jar --batch-size 50

There is no ideal batch size, it is a tradeoff between throughput and latency. High batch size values
should increase throughput (usually good) and latency (usually not so good), whereas low batch
size should decrease throughput (usually not good) and latency (usually good).

36

https://docs.oracle.com/javase/7/docs/api/java/util/Formatter.html
https://docs.oracle.com/javase/7/docs/api/java/util/Formatter.html

Unconfirmed Messages

A publisher can have at most 10,000 unconfirmed messages at some point. If it reaches this value, it
has to wait until the broker confirms some messages. This avoids fast publishers overwhelming the
broker. The --confirms option allows changing the default value:

java -jar stream-perf-test.jar --confirms 20000

High values should increase throughput at the cost of consuming more memory, whereas low
values should decrease throughput and memory consumption.

Message Size

The default size of a message is 10 bytes, which is rather small. The --size option lets you specify a
different size, usually higher, to have a value close to your use case. The next command sets a size
of 1 KB:

java -jar stream-perf-test.jar --size 1024

Note the message body size cannot be smaller that 8 bytes, as the performance tool stores a long in
each message to calculate the latency. Note also the actual size of a message will be slightly higher,
as the body is wrapped in an AMQP 1.0 message.

Connection Pooling

The performance tool does not use connection pooling by default: each producer and consumer has
its own connection. This can be appropriate to reach maximum throughput in performance test
runs, as producers and consumers do not share connections. But it may not always reflect what
applications do, as they may have slow producers and not-so-busy consumers, so sharing
connections becomes interesting to save some resources.

It is possible to configure connection pooling with the --producers-by-connection and --consumers
-by-connection options. They accept a value between 1 and 255, the default being 1 (no connection
pooling).

In the following example we use 10 streams with 1 producer and 1 consumer on each of them. As
the rate is low, we can re-use connections:

java -jar stream-perf-test.jar --producers 10 --consumers 10 --stream-count 10 \
--rate 1000 \
--producers-by-connection 50 --consumers-by-connection
50

We end up using 2 connections for the producers and consumers with connection pooling, instead
of 20.

57

Advanced Usage

Retention

If you run performance tests for a long time, you might be interested in setting a retention strategy
for the streams the performance tool creates for a run. This would typically avoid saturating the
storage devices of your servers. The default values are 20 GB for the maximum size of a stream and
500 MB for each segment files that composes a stream. You can change these values with the --max
-length-bytes and --stream-max-segment-size-bytes options:

java -jar stream-perf-test.jar --max-length-bytes 10gb \
--stream-max-segment-size-bytes 250mb

Both options accept units (kb, mb, gb, tb), as well as no unit to specify a number of bytes.

It is also possible to use the time-based retention strategy with the --max-age option. This can be less
predictable than --max-length-bytes in the context of performance tests though. The following
command shows how to set the maximum age of segments to 5 minutes with a maximum segment
size of 250 MB:

java -jar stream-perf-test.jar --max-age PT5M \
--stream-max-segment-size-bytes 250mb

The --max-age option uses the ISO 8601 duration format.

Offset (Consumer)

Consumers start by default at the very end of a stream (offset next). It is possible to specify an offset
to start from with the --offset option, if you have existing streams, and you want to consume from
them at a specific offset. The following command sets the consumer to start consuming at the
beginning of a stream:

java -jar stream-perf-test.jar --offset first

The accepted values for --offset are first, last, next (the default), an unsigned long for a given
offset, and an ISO 8601 formatted timestamp (eg. 2020-06-03T07:45:547).

Offset Tracking (Consumer)

A consumer can track the point it has reached in a stream to be able to restart where it left off in a
new incarnation. The performance tool has the --store-every option to tell consumers to store the
offset every x messages to be able to measure the impact of offset tracking in terms of throughput
and storage. This feature is disabled by default. The following command shows how to store the
offset every 100,000 messages:

38

https://en.wikipedia.org/wiki/ISO_8601#Durations

java -jar stream-perf-test.jar --store-every 100000

Consumer Names

When using --store-every (see above) for offset tracking, the performance tool uses a default name
using the pattern {stream-name}-{consumer-number}. So the default name of a single tracking
consumer consuming from stream will be stream-1.

The consumer names pattern can be set with the --consumer-names option, which uses the Java
printf-style format string. The stream name and the consumer number are injected as arguments,
in this order.

The following table illustrates some examples for the --consumer-names option for a s1 stream and a
second consumer:

Option Computed Name Details

%s-%d s1-2 Default pattern.
stream-%s-consumer-%d stream-s1-consumer-2

consumer-%2$d-on-stream-%1§s consumer-2-on-stream-s1 The argument indexes (1$ for

the stream, 2$ for the consumer
number) must be used as the
pattern uses the consumer
number first, which is not the
pre-defined order of arguments.

uuid 7cc75659-ea67-4874-96ef- Random UUID that Changes for

151a505e1a55 every run.

Note you can use --consumer-names uuid to change the consumer names for every run. This can be
useful when you want to use tracking consumers in different runs but you want to force the offset
they start consuming from. With consumer names that do not change between runs, tracking
consumers would ignore the specified offset and would start where they left off (this is the purpose
of offset tracking).

Producer Names

You can use the --producer-names option to set the producer names pattern and therefore enable
message deduplication (using the default publishing sequence starting at 0 and incremented for
each message). The same naming options apply as above in consumer names with the only
difference that the default pattern is empty (i.e. no deduplication).

Here is an example of the usage of the --producer-names option:

java -jar stream-perf-test.jar --producer-names %s-%d

The run will start one producer and will use the stream-1 producer reference (default stream is
stream and the number of the producer is 1.)

39

https://docs.oracle.com/javase/7/docs/api/java/util/Formatter.html
https://docs.oracle.com/javase/7/docs/api/java/util/Formatter.html
https://docs.oracle.com/javase/7/docs/api/java/util/UUID.html#randomUUID()

Load Balancer in Front of the Cluster

A load balancer can misguide the performance tool when it tries to connect to nodes that host
stream leaders and replicas. The "Connecting to Streams" blog post covers why client applications
must connect to the appropriate nodes in a cluster.

Use the --load-balancer flag to make sure the performance tool always goes through the load
balancer that sits in front of your cluster:

java -jar stream-perf-test.jar --uris rabbitmg-stream://my-load-balancer:5552 \
--load-balancer

The same blog post covers why a load balancer can make things more complicated for client
applications like the performance tool and how they can mitigate these issues.

Single Active Consumer

If the --single-active-consumer flag is set, the performance tool will create single active consumer
instances. This means that if there are more consumers than streams, there will be only one active
consumer at a time on a stream, if they share the same name. Note offset tracking gets enabled
automatically if it’s not with --single-active-consumer (using 10,000 for --store-every). Let’s see a
couple of examples.

In the following command we have 1 producer publishing to 1 stream and 3 consumers on this
stream. As --single-active-consumer is used, only one of these consumers will be active at a time.

java -jar stream-perf-test.jar --producers 1 --consumers 3 --single-active-consumer \
--consumer-names my-app

Note we use a fixed value for the consumer names: if they don’t have the same name, the broker
will not consider them as a group of consumers, so they will all get messages, like regular
consumers.

In the following example we have 2 producers for 2 streams and 6 consumers overall (3 for each
stream). Note the consumers have the same name on their streams with the use of --consumer-names
my-app-%s, as %s is a placeholder for the stream name.

java -jar stream-perf-test.jar --producers 2 --consumers 6 --stream-count 2 \
--single-active-consumer --consumer-names my-app-%s

Super Streams

The performance tool has a --super-streams flag to enable super streams on the publisher and
consumer sides. This support is meant to be used with the --single-active-consumer flag, to benefit
from both features. We recommend reading the appropriate sections of the documentation to
understand the semantics of the flags before using them. Let’s see some examples.

60

https://blog.rabbitmq.com/posts/2021/07/connecting-to-streams/
https://blog.rabbitmq.com/posts/2021/07/connecting-to-streams/#with-a-load-balancer
https://blog.rabbitmq.com/posts/2021/07/connecting-to-streams/#client-workaround-with-a-load-balancer

The example below creates 1 producer and 3 consumers on the default stream, which is now a super
stream because of the --super-streams flag:

java -jar stream-perf-test.jar --producers 1 --consumers 3 --single-active-consumer \
--super-streams --consumer-names my-app

The performance tool creates 3 individual streams by default, they are the partitions of the super
stream. They are named stream-0, stream-1, and stream-2, after the name of the super stream,
stream. The producer will publish to each of them, using a hash-based routing strategy.

A consumer is composite with --super-streams: it creates a consumer instance for each partition.
This is 9 consumer instances overall — 3 composite consumers and 3 partitions — spread evenly
across the partitions, but with only one active at a time on a given stream.

Note we use a fixed consumer name so that the broker considers the consumers belong to the same
group and enforce the single active consumer behavior.

The next example is more convoluted. We are going to work with 2 super streams (--stream-count 2
and --super-streams). Each super stream will have 5 partitions (--super-stream-partitions 5), so
this is 10 streams overall (stream-1-0 to stream-1-4 and stream-2-0 to stream-2-4). Here is the
command line:

java -jar stream-perf-test.jar --producers 2 --consumers 6 --stream-count 2 \
--super-streams --super-stream-partitions 5 \
--single-active-consumer \
--consumer-names my-app-%s

We see also that each super stream has 1 producer (--producers 2) and 3 consumers (--consumers
6). The composite consumers will spread their consumer instances across the partitions. Each
partition will have 3 consumers but only 1 active at a time with --single-active-consumer and
--consumer-names my-app-%s (the consumers on a given stream have the same name, so the broker
make sure only one consumes at a time).

Note the performance tool does not use connection pooling by default. The command above opens a
significant number of connections — 30 just for consumers — and may not reflect exactly how
applications are deployed in the real world. Don’t hesitate to use the --producers-by-connection and
--consumers-by-connection options to make the runs as close to your workloads as possible.

Monitoring

The tool can expose some runtime information on HTTP. The default port is 8080. The following
options are available:

* --monitoring: add a threaddump endpoint to display a thread dump of the process. This can be
useful to inspect threads if the tool seems blocked.

* --prometheus: add a metrics endpoint to expose metrics using the Prometheus format. The
endpoint can then be declared in a Prometheus instance to scrape the metrics.

61

* --monitoring-port: set the port to use for the web server.

Synchronizing Several Instances

NOTE This feature is available only on Java 11 or more.

Instances of the performance tool can synchronize to start at the same time. This can prove useful
when you apply different workloads and want to compare them on the same monitoring graphics.
The --id flag identifies the group of instances that need to synchronize and the --expected
-instances flag sets the size of the group.

Let’s start a couple of instances to compare the impact of message size. The first instance uses 100-
byte message:

java -jar stream-perf-test.jar --id msg-size-comparison --expected-instances 2 \
--size 100

The instance will wait until the second one is ready:

java -jar stream-perf-test.jar --id msg-size-comparison --expected-instances 2 \
--Size 200

Both instances must share the same --1d if they want to communicate to synchronize.

The default synchronization timeout is 10 minutes. This can be changed with the --instance-sync
-timeout flag, using a value in seconds.

Instance synchronization is compatible with PerfTest, the AMQP 0.9.1 performance
NOTE tool for RabbitMQ: instances of both tools can synchronize with each other. The 2
tools use the same flags for this feature.

Instance synchronization requires IP multicast to be available. IP multicast is not necessary when
the performance tool runs on Kubernetes pods. In this case, the tool asks Kubernetes for a list of
pod IPs. The performance tool instances are expected to run in the same namespace, and the
namespace must be available in the MY_POD_NAMESPACE environment variable or provided with the
--instance-sync-namespace flag. As soon as the namespace information is available, the tool will
prefer listing pod IPs over using IP multicast. Here is an example of using instance synchronization
on Kubernetes by providing the namespace explicitly:

java -jar stream-perf-test.jar --id workload-1 --expected-instances 2 \
--instance-sync-namespace ga

The performance tool needs permission to ask Kubernetes for a list of pod IPs. This
NOTE is done by creating various policies e.g. with YAML. See the Kubernetes discovery
protocol for JGroups page for more information.

62

https://perftest-dev.rabbitmq.com/#instance-synchronization
https://en.wikipedia.org/wiki/IP_multicast
https://github.com/jgroups-extras/jgroups-kubernetes
https://github.com/jgroups-extras/jgroups-kubernetes

Using Environment Variables as Options

Environment variables can sometimes be easier to work with than command line options. This is
especially true when using a manifest file for configuration (with Docker Compose or Kubernetes)
and the number of options used grows.

The performance tool automatically uses environment variables that match the snake case version
of its long options. E.g. it automatically picks up the value of the BATCH_SIZE environment variable
for the --batch-size option, but only if the environment variable is defined.

You can list the environment variables that the tool picks up with the following command:

java -jar stream-perf-test.jar --environment-variables

The short version of the option is -env.

To avoid collisions with environment variables that already exist, it is possible to specify a prefix
for the environment variables that the tool looks up. This prefix is defined with the
RABBITMQ_STREAM_PERF_TEST_ENV_PREFIX environment variable, e.g.:

RABBITMQ_STREAM_PERF_TEST_ENV_PREFIX="STREAM_PERF_TEST_"

With RABBITMQ STREAM PERF_TEST_ENV_PREFIX="STREAM_PERF TEST " defined, the tool looks for the
STREAM_PERF_TEST BATCH_SIZE environment variable, not BATCH_SIZE.

Logging

The performance tool binary uses Logback with an internal configuration file. The default log level
is warn with a console appender.

It is possible to define loggers directly from the command line, this is useful for quick debugging.
Use the rabbitmqg.streamperftest.loggers system property with name=1evel pairs, e.g.:

java -Drabbitmg.streamperftest.loggers=com.rabbitmq.stream=debug -jar stream-perf-
test.jar

It is possible to define several loggers by separating them with commas, e.g.
-Drabbitmq.streamperftest.loggers=com.rabbitmq.stream=debug,com.rabbitmq.stream.perf=info.

It is also possible to use an environment variable:

export RABBITMQ_STREAM_PERF_TEST_LOGGERS=com.rabbitmq.stream=debug

The system property takes precedence over the environment variable.

Use the environment variable with the Docker image:

63

docker run -it --rm --network host \
--env RABBITMQ_STREAM_PERF_TEST_LOGGERS=com.rabbitmq.stream=debug \
pivotalrabbitmq/stream-perf-test

Building the Performance Tool

To build the uber JAR:
./mvnw clean package -Dmaven.test.skip -P performance-tool
Then run the tool:

java -jar target/stream-perf-test.jar

Appendix A: Micrometer Observation

It is possible to use Micrometer Observation to instrument publishing and consuming in the stream
Java client. Micrometer Observation provides metrics, tracing, and log correlation with one single
APL

The stream Java client provides an ObservationCollector abstraction and an implementation for
Micrometer Observation. The following snippet shows how to create and set up the Micrometer
ObservationCollector implementation with an existing ObservationRegistry:

Configuring Micrometer Observation

Environment environment = Environment.builder()
.observationCollector(new MicrometerObservationCollectorBuilder() @
.registry(observationRegistry).build()) @
.build();

@ Configure Micrometer ObservationCollector with builder

@ Set Micrometer ObservationRegistry

The next sections document the conventions, spans, and metrics made available by the
instrumentation. They are automatically generated from the source code with the Micrometer
documentation generator.

Observability - Conventions

Below you can find a list of all GlobalObservationConvention and ObservationConvention declared by
this project.

Table 1. ObservationConvention implementations

64

https://micrometer.io/docs/observation
https://spring.io/blog/2022/10/12/observability-with-spring-boot-3
https://spring.io/blog/2022/10/12/observability-with-spring-boot-3
https://github.com/micrometer-metrics/micrometer-docs-generator
https://github.com/micrometer-metrics/micrometer-docs-generator

ObservationConvention Class Name Applicable ObservationContext Class Name

com.rabbitmq.stream.observation.micrometer.Def ProcessContext
aultProcessObservationConvention

com.rabbitmq.stream.observation.micrometer.Pro ProcessContext
cessObservationConvention

com.rabbitmq.stream.observation.micrometer.Def PublishContext
aultPublishObservationConvention

com.rabbitmg.stream.observation.micrometer.Pub PublishContext
lishObservationConvention

Observability - Spans

Below you can find a list of all spans declared by this project.

Process Observation Span
Observation for processing a message.

Span name rabbitmqg.stream.process (defined by convention class
com.rabbitmg.stream.observation.micrometer.DefaultProcessObservationConvention).

Fully qualified name of the enclosing class
com.rabbitmq.stream.observation.micrometer.StreamObservationDocumentation.

Table 2. Tag Keys

Name Description

messaging.operation (required) A string identifying the kind of messaging
operation.

messaging.system (required) A string identifying the messaging system.

net.protocol.name (required) A string identifying the protocol (RabbitMQ
Stream).

net.protocol.version (required) A string identifying the protocol version (1.0).

Publish Observation Span
Observation for publishing a message.

Span name rabbitmq.stream.publish (defined by convention class
com.rabbitmq.stream.observation.micrometer.DefaultPublishObservationConvention).

Fully qualified name of the enclosing class
com.rabbitmg.stream.observation.micrometer.StreamObservationDocumentation.

Table 3. Tag Keys

Name Description

65

messaging.operation (required) A string identifying the kind of messaging

operation.
messaging.system (required) A string identifying the messaging system.
net.protocol.name (required) A string identifying the protocol (RabbitMQ
Stream).
net.protocol.version (required) A string identifying the protocol version (1.0).

Observability - Metrics

Below you can find a list of all metrics declared by this project.

Process Observation
Observation for processing a message.

Metric name rabbitmq.stream.process (defined by convention class
com.rabbitmq.stream.observation.micrometer.DefaultProcessObservationConvention). Type timer.

Metric name rabbitmq.stream.process.active (defined by convention class
com.rabbitmqg.stream.observation.micrometer.DefaultProcessObservationConvention). Type long task
timer.

KeyValues that are added after starting the Observation might be missing

IMPORTANT . .
from the *active metrics.
Micrometer internally uses nanoseconds for the baseunit. However, each
IMPORTANT . o
backend determines the actual baseunit. (i.e. Prometheus uses seconds)
Fully qualified name of the enclosing class

com.rabbitmqg.stream.observation.micrometer.StreamObservationDocumentation.

Table 4. Low cardinality Keys

Name Description

messaging.operation (required) A string identifying the kind of messaging
operation.

messaging.system (required) A string identifying the messaging system.

net.protocol.name (required) A string identifying the protocol (RabbitMQ
Stream).

net.protocol.version (required) A string identifying the protocol version (1.0).

Publish Observation

Observation for publishing a message.

66

Metric name rabbitmqg.stream.publish (defined by convention class
com.rabbitmqg.stream.observation.micrometer.DefaultPublishObservationConvention). Type timer.

Metric name rabbitmq.stream.publish.active (defined by convention class
com.rabbitmg.stream.observation.micrometer.DefaultPublishObservationConvention). Type long task
timer.

KeyValues that are added after starting the Observation might be missing

IMPORTANT . .
from the *active metrics.
Micrometer internally uses nanoseconds for the baseunit. However, each
IMPORTANT . o
backend determines the actual baseunit. (i.e. Prometheus uses seconds)
Fully qualified name of the enclosing class

com.rabbitmq.stream.observation.micrometer.StreamObservationDocumentation.

Table 5. Low cardinality Keys

Name Description

messaging.operation (required) A string identifying the kind of messaging
operation.

messaging.system (required) A string identifying the messaging system.

net.protocol.name (required) A string identifying the protocol (RabbitMQ
Stream).

net.protocol.version (required) A string identifying the protocol version (1.0).

67

	RabbitMQ Stream Java Client
	Table of Contents
	What is a RabbitMQ Stream?
	When to Use RabbitMQ Stream?
	Other Way to Use Streams in RabbitMQ
	Guarantees
	Stream Client Overview
	Versioning
	Stability of Programming Interfaces
	The Stream Java Client
	Setting up RabbitMQ
	With Docker
	With Docker Bridge Network Driver
	With Docker Host Network Driver

	With a RabbitMQ Package Running on the Host

	Dependencies
	Maven
	Gradle

	Snapshots
	Sample Application
	RabbitMQ Stream Java API
	Overview
	Environment
	Creating the Environment
	Understanding Connection Logic
	Enabling TLS
	Configuring the Environment
	When a Load Balancer is in Use
	Managing Streams

	Producer
	Creating a Producer
	Sending Messages
	Working with Complex Messages
	Message Deduplication
	Sub-Entry Batching and Compression

	Consumer
	Creating a Consumer
	Specifying an Offset
	Tracking the Offset for a Consumer
	Flow Control
	Single Active Consumer

	Super Streams (Partitioned Streams)
	Topology
	Super Stream Creation
	Publishing to a Super Stream
	Consuming From a Super Stream

	Advanced Topics
	Filtering
	Filtering on the Publishing Side
	Filtering on the Consuming Side
	Considerations on Filtering

	Using Native epoll

	Building the Client

	The Performance Tool
	Using the Performance Tool
	With Docker
	With Docker Host Network Driver
	With Docker Bridge Network Driver

	With the Java Binary
	Common Usage
	Connection
	Publishing Rate
	Number of Producers and Consumers
	Streams
	Publishing Batch Size
	Unconfirmed Messages
	Message Size
	Connection Pooling

	Advanced Usage
	Retention
	Offset (Consumer)
	Offset Tracking (Consumer)
	Consumer Names
	Producer Names
	Load Balancer in Front of the Cluster
	Single Active Consumer
	Super Streams
	Monitoring
	Synchronizing Several Instances
	Using Environment Variables as Options
	Logging

	Building the Performance Tool

	Appendix A: Micrometer Observation
	Observability - Conventions
	Observability - Spans
	Process Observation Span
	Publish Observation Span

	Observability - Metrics
	Process Observation
	Publish Observation

